Optimal. Leaf size=26 \[ 2 e^{-x} x^2 \left (e^x+e^{-3+x+x^2} x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 18, normalized size of antiderivative = 0.69, number of steps used = 9, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {6688, 2226, 2212, 2209} \begin {gather*} 2 x^2+2 e^{x^2-3} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2209
Rule 2212
Rule 2226
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 x+4 e^{-3+x^2} x^3 \left (2+x^2\right )\right ) \, dx\\ &=2 x^2+4 \int e^{-3+x^2} x^3 \left (2+x^2\right ) \, dx\\ &=2 x^2+4 \int \left (2 e^{-3+x^2} x^3+e^{-3+x^2} x^5\right ) \, dx\\ &=2 x^2+4 \int e^{-3+x^2} x^5 \, dx+8 \int e^{-3+x^2} x^3 \, dx\\ &=2 x^2+4 e^{-3+x^2} x^2+2 e^{-3+x^2} x^4-8 \int e^{-3+x^2} x \, dx-8 \int e^{-3+x^2} x^3 \, dx\\ &=-4 e^{-3+x^2}+2 x^2+2 e^{-3+x^2} x^4+8 \int e^{-3+x^2} x \, dx\\ &=2 x^2+2 e^{-3+x^2} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.69 \begin {gather*} 2 x^2+2 e^{-3+x^2} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 24, normalized size = 0.92 \begin {gather*} 2 \, {\left (x^{4} e^{\left (x^{2} + x - 3\right )} + x^{2} e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.60, size = 37, normalized size = 1.42 \begin {gather*} 2 \, {\left (x^{2} e^{3} + {\left (x^{4} - 2 \, x^{2} + 2\right )} e^{\left (x^{2}\right )} + 2 \, {\left (x^{2} - 1\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 18, normalized size = 0.69
method | result | size |
risch | \(2 x^{2}+2 x^{4} {\mathrm e}^{x^{2}-3}\) | \(18\) |
norman | \(\left (2 \,{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{x^{2}+x -3} x^{4}\right ) {\mathrm e}^{-x}\) | \(26\) |
default | \(2 x^{2}+8 \,{\mathrm e}^{-3} \left (\frac {x^{2} {\mathrm e}^{x^{2}}}{2}-\frac {{\mathrm e}^{x^{2}}}{2}\right )+4 \,{\mathrm e}^{-3} \left (\frac {x^{4} {\mathrm e}^{x^{2}}}{2}-x^{2} {\mathrm e}^{x^{2}}+{\mathrm e}^{x^{2}}\right )\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 37, normalized size = 1.42 \begin {gather*} 2 \, x^{2} + 2 \, {\left (x^{4} - 2 \, x^{2} + 2\right )} e^{\left (x^{2} - 3\right )} + 4 \, {\left (x^{2} - 1\right )} e^{\left (x^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.55, size = 17, normalized size = 0.65 \begin {gather*} 2\,x^2+2\,x^4\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.77 \begin {gather*} 2 x^{4} e^{- x} e^{x^{2} + x - 3} + 2 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________