Optimal. Leaf size=28 \[ \frac {\log (x)}{4 x \left (4+5 \left (2 x+\frac {2 \log (x)}{x}\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+5 x^4+\left (-x^2-15 x^4\right ) \log (x)+\left (-5-10 x^2\right ) \log ^2(x)+5 \log ^3(x)}{16 x^4+160 x^6+400 x^8+\left (320 x^4+1600 x^6\right ) \log (x)+\left (160 x^2+2400 x^4\right ) \log ^2(x)+1600 x^2 \log ^3(x)+400 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2+5 x^4-\left (x^2+15 x^4\right ) \log (x)-5 \left (1+2 x^2\right ) \log ^2(x)+5 \log ^3(x)}{16 \left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx\\ &=\frac {1}{16} \int \frac {x^2+5 x^4-\left (x^2+15 x^4\right ) \log (x)-5 \left (1+2 x^2\right ) \log ^2(x)+5 \log ^3(x)}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx\\ &=\frac {1}{16} \int \left (\frac {2 x^2 \left (1+7 x^2+10 x^4+4 \log (x)+10 x^2 \log (x)\right )}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2}+\frac {-1-4 x^2+\log (x)}{x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)}\right ) \, dx\\ &=\frac {1}{16} \int \frac {-1-4 x^2+\log (x)}{x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)} \, dx+\frac {1}{8} \int \frac {x^2 \left (1+7 x^2+10 x^4+4 \log (x)+10 x^2 \log (x)\right )}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx\\ &=\frac {1}{16} \int \left (\frac {1}{-x^2-5 x^4-10 x^2 \log (x)-5 \log ^2(x)}-\frac {4 x^2}{x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)}+\frac {\log (x)}{x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)}\right ) \, dx+\frac {1}{8} \int \left (\frac {x^2}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2}+\frac {7 x^4}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2}+\frac {10 x^6}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2}+\frac {4 x^2 \log (x)}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2}+\frac {10 x^4 \log (x)}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2}\right ) \, dx\\ &=\frac {1}{16} \int \frac {1}{-x^2-5 x^4-10 x^2 \log (x)-5 \log ^2(x)} \, dx+\frac {1}{16} \int \frac {\log (x)}{x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)} \, dx+\frac {1}{8} \int \frac {x^2}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx-\frac {1}{4} \int \frac {x^2}{x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)} \, dx+\frac {1}{2} \int \frac {x^2 \log (x)}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx+\frac {7}{8} \int \frac {x^4}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx+\frac {5}{4} \int \frac {x^6}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx+\frac {5}{4} \int \frac {x^4 \log (x)}{\left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 31, normalized size = 1.11 \begin {gather*} \frac {x \log (x)}{16 \left (x^2+5 x^4+10 x^2 \log (x)+5 \log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 29, normalized size = 1.04 \begin {gather*} \frac {x \log \relax (x)}{16 \, {\left (5 \, x^{4} + 10 \, x^{2} \log \relax (x) + x^{2} + 5 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 29, normalized size = 1.04 \begin {gather*} \frac {x \log \relax (x)}{16 \, {\left (5 \, x^{4} + 10 \, x^{2} \log \relax (x) + x^{2} + 5 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.07
method | result | size |
risch | \(\frac {x \ln \relax (x )}{80 x^{4}+160 x^{2} \ln \relax (x )+80 \ln \relax (x )^{2}+16 x^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 29, normalized size = 1.04 \begin {gather*} \frac {x \log \relax (x)}{16 \, {\left (5 \, x^{4} + 10 \, x^{2} \log \relax (x) + x^{2} + 5 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {5\,{\ln \relax (x)}^3-{\ln \relax (x)}^2\,\left (10\,x^2+5\right )-\ln \relax (x)\,\left (15\,x^4+x^2\right )+x^2+5\,x^4}{\ln \relax (x)\,\left (1600\,x^6+320\,x^4\right )+400\,{\ln \relax (x)}^4+{\ln \relax (x)}^2\,\left (2400\,x^4+160\,x^2\right )+1600\,x^2\,{\ln \relax (x)}^3+16\,x^4+160\,x^6+400\,x^8} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 29, normalized size = 1.04 \begin {gather*} \frac {x \log {\relax (x )}}{80 x^{4} + 160 x^{2} \log {\relax (x )} + 16 x^{2} + 80 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________