Optimal. Leaf size=22 \[ e^{3+\frac {3}{5-\frac {e^4}{3}+2 e^x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 4, number of rules used = 4, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.063, Rules used = {12, 2282, 2230, 2209} \begin {gather*} e^{\frac {9}{6 e^x+15-e^4}+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 2230
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (54 \int \frac {e^{\frac {54-3 e^4+18 e^x}{15-e^4+6 e^x}+x}}{225-30 e^4+e^8+36 e^{2 x}+e^x \left (180-12 e^4\right )} \, dx\right )\\ &=-\left (54 \operatorname {Subst}\left (\int \frac {e^{\frac {3 \left (-18+e^4-6 x\right )}{-15+e^4-6 x}}}{\left (15-e^4+6 x\right )^2} \, dx,x,e^x\right )\right )\\ &=-\left (54 \operatorname {Subst}\left (\int \frac {\exp \left (3+\frac {6 \left (-18+e^4\right )-6 \left (-15+e^4\right )}{2 \left (-15+e^4-6 x\right )}\right )}{\left (15-e^4+6 x\right )^2} \, dx,x,e^x\right )\right )\\ &=e^{3+\frac {9}{15-e^4+6 e^x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 20, normalized size = 0.91 \begin {gather*} e^{3+\frac {9}{15-e^4+6 e^x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 34, normalized size = 1.55 \begin {gather*} e^{\left (-x + \frac {{\left (x + 3\right )} e^{4} - 6 \, {\left (x + 3\right )} e^{x} - 15 \, x - 54}{e^{4} - 6 \, e^{x} - 15}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {54 \, e^{\left (x + \frac {3 \, {\left (e^{4} - 6 \, e^{x} - 18\right )}}{e^{4} - 6 \, e^{x} - 15}\right )}}{12 \, {\left (e^{4} - 15\right )} e^{x} - e^{8} + 30 \, e^{4} - 36 \, e^{\left (2 \, x\right )} - 225}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 22, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\frac {-18 \,{\mathrm e}^{x}+3 \,{\mathrm e}^{4}-54}{-6 \,{\mathrm e}^{x}+{\mathrm e}^{4}-15}}\) | \(22\) |
norman | \(\frac {\left ({\mathrm e}^{4}-15\right ) {\mathrm e}^{\frac {18 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{4}+54}{6 \,{\mathrm e}^{x}-{\mathrm e}^{4}+15}}-6 \,{\mathrm e}^{x} {\mathrm e}^{\frac {18 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{4}+54}{6 \,{\mathrm e}^{x}-{\mathrm e}^{4}+15}}}{-6 \,{\mathrm e}^{x}+{\mathrm e}^{4}-15}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 42, normalized size = 1.91 \begin {gather*} e^{\left (\frac {3 \, e^{4}}{e^{4} - 6 \, e^{x} - 15} - \frac {18 \, e^{x}}{e^{4} - 6 \, e^{x} - 15} - \frac {54}{e^{4} - 6 \, e^{x} - 15}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 50, normalized size = 2.27 \begin {gather*} {\mathrm {e}}^{\frac {18\,{\mathrm {e}}^x}{6\,{\mathrm {e}}^x-{\mathrm {e}}^4+15}}\,{\mathrm {e}}^{\frac {54}{6\,{\mathrm {e}}^x-{\mathrm {e}}^4+15}}\,{\mathrm {e}}^{-\frac {3\,{\mathrm {e}}^4}{6\,{\mathrm {e}}^x-{\mathrm {e}}^4+15}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 22, normalized size = 1.00 \begin {gather*} e^{\frac {18 e^{x} - 3 e^{4} + 54}{6 e^{x} - e^{4} + 15}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________