Optimal. Leaf size=21 \[ x^{\frac {3 e^{e^3+4 x^2}}{x}}+\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 0.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+x^{\frac {3 e^{e^3+4 x^2}}{x}} \left (3 e^{e^3+4 x^2}+e^{e^3+4 x^2} \left (-3+24 x^2\right ) \log (x)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+3 e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \left (1-\log (x)+8 x^2 \log (x)\right )\right ) \, dx\\ &=\log (x)+3 \int e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \left (1-\log (x)+8 x^2 \log (x)\right ) \, dx\\ &=\log (x)+3 \int \left (e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}}-e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \log (x)+8 e^{e^3+4 x^2} x^{\frac {3 e^{e^3+4 x^2}}{x}} \log (x)\right ) \, dx\\ &=\log (x)+3 \int e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \, dx-3 \int e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \log (x) \, dx+24 \int e^{e^3+4 x^2} x^{\frac {3 e^{e^3+4 x^2}}{x}} \log (x) \, dx\\ &=\log (x)+3 \int e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \, dx+3 \int \frac {\int e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \, dx}{x} \, dx-24 \int \frac {\int e^{e^3+4 x^2} x^{\frac {3 e^{e^3+4 x^2}}{x}} \, dx}{x} \, dx-(3 \log (x)) \int e^{e^3+4 x^2} x^{-2+\frac {3 e^{e^3+4 x^2}}{x}} \, dx+(24 \log (x)) \int e^{e^3+4 x^2} x^{\frac {3 e^{e^3+4 x^2}}{x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 21, normalized size = 1.00 \begin {gather*} x^{\frac {3 e^{e^3+4 x^2}}{x}}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 19, normalized size = 0.90 \begin {gather*} x^{\frac {3 \, e^{\left (4 \, x^{2} + e^{3}\right )}}{x}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left ({\left (8 \, x^{2} - 1\right )} e^{\left (4 \, x^{2} + e^{3}\right )} \log \relax (x) + e^{\left (4 \, x^{2} + e^{3}\right )}\right )} x^{\frac {3 \, e^{\left (4 \, x^{2} + e^{3}\right )}}{x}} + x}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 0.95
method | result | size |
risch | \(\ln \relax (x )+x^{\frac {3 \,{\mathrm e}^{{\mathrm e}^{3}+4 x^{2}}}{x}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 19, normalized size = 0.90 \begin {gather*} x^{\frac {3 \, e^{\left (4 \, x^{2} + e^{3}\right )}}{x}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 19, normalized size = 0.90 \begin {gather*} \ln \relax (x)+x^{\frac {3\,{\mathrm {e}}^{4\,x^2+{\mathrm {e}}^3}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 20, normalized size = 0.95 \begin {gather*} e^{\frac {3 e^{4 x^{2} + e^{3}} \log {\relax (x )}}{x}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________