Optimal. Leaf size=24 \[ x \left (-\frac {16 \left (-e^4+e^{e^5}\right )^2}{x^2}+\log (\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6688, 2298, 14, 2520} \begin {gather*} x \log (\log (x))-\frac {16 \left (e^4-e^{e^5}\right )^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2298
Rule 2520
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{\log (x)}+\frac {16 \left (e^4-e^{e^5}\right )^2+x^2 \log (\log (x))}{x^2}\right ) \, dx\\ &=\int \frac {1}{\log (x)} \, dx+\int \frac {16 \left (e^4-e^{e^5}\right )^2+x^2 \log (\log (x))}{x^2} \, dx\\ &=\text {li}(x)+\int \left (\frac {16 \left (-e^4+e^{e^5}\right )^2}{x^2}+\log (\log (x))\right ) \, dx\\ &=-\frac {16 \left (e^4-e^{e^5}\right )^2}{x}+\text {li}(x)+\int \log (\log (x)) \, dx\\ &=-\frac {16 \left (e^4-e^{e^5}\right )^2}{x}+x \log (\log (x))+\text {li}(x)-\int \frac {1}{\log (x)} \, dx\\ &=-\frac {16 \left (e^4-e^{e^5}\right )^2}{x}+x \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 27, normalized size = 1.12 \begin {gather*} \frac {-16 \left (e^4-e^{e^5}\right )^2+x^2 \log (\log (x))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 36, normalized size = 1.50 \begin {gather*} \frac {{\left (x^{2} e^{8} \log \left (\log \relax (x)\right ) - 16 \, e^{16} - 16 \, e^{\left (2 \, e^{5} + 8\right )} + 32 \, e^{\left (e^{5} + 12\right )}\right )} e^{\left (-8\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 30, normalized size = 1.25 \begin {gather*} \frac {x^{2} \log \left (\log \relax (x)\right ) - 16 \, e^{8} - 16 \, e^{\left (2 \, e^{5}\right )} + 32 \, e^{\left (e^{5} + 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 33, normalized size = 1.38
method | result | size |
default | \(-\frac {16 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}-32 \,{\mathrm e}^{4} {\mathrm e}^{{\mathrm e}^{5}}+16 \,{\mathrm e}^{8}}{x}+x \ln \left (\ln \relax (x )\right )\) | \(33\) |
norman | \(\frac {x^{2} \ln \left (\ln \relax (x )\right )-16 \,{\mathrm e}^{8}+32 \,{\mathrm e}^{4} {\mathrm e}^{{\mathrm e}^{5}}-16 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}}{x}\) | \(33\) |
risch | \(x \ln \left (\ln \relax (x )\right )-\frac {16 \,{\mathrm e}^{8}}{x}+\frac {32 \,{\mathrm e}^{4+{\mathrm e}^{5}}}{x}-\frac {16 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}}{x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 33, normalized size = 1.38 \begin {gather*} x \log \left (\log \relax (x)\right ) - \frac {16 \, e^{8}}{x} - \frac {16 \, e^{\left (2 \, e^{5}\right )}}{x} + \frac {32 \, e^{\left (e^{5} + 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.34, size = 30, normalized size = 1.25 \begin {gather*} x\,\ln \left (\ln \relax (x)\right )-\frac {16\,{\mathrm {e}}^{2\,{\mathrm {e}}^5}-32\,{\mathrm {e}}^{{\mathrm {e}}^5+4}+16\,{\mathrm {e}}^8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 31, normalized size = 1.29 \begin {gather*} x \log {\left (\log {\relax (x )} \right )} - \frac {- 32 e^{4} e^{e^{5}} + 16 e^{8} + 16 e^{2 e^{5}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________