Optimal. Leaf size=29 \[ e^{2-x+\left (4+\frac {e^{-2+x}}{5}\right ) x+5 \left (2+4 x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 23, normalized size of antiderivative = 0.79, number of steps used = 2, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{5} \left (100 x^2+e^{x-2} x+15 x+60\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {1}{5} \left (60+15 x+e^{-2+x} x+100 x^2\right )} \left (15+200 x+e^{-2+x} (1+x)\right ) \, dx\\ &=e^{\frac {1}{5} \left (60+15 x+e^{-2+x} x+100 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 22, normalized size = 0.76 \begin {gather*} e^{12+3 x+\frac {1}{5} e^{-2+x} x+20 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 18, normalized size = 0.62 \begin {gather*} e^{\left (20 \, x^{2} + \frac {1}{5} \, x e^{\left (x - 2\right )} + 3 \, x + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 18, normalized size = 0.62 \begin {gather*} e^{\left (20 \, x^{2} + \frac {1}{5} \, x e^{\left (x - 2\right )} + 3 \, x + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.66
method | result | size |
norman | \({\mathrm e}^{\frac {x \,{\mathrm e}^{x -2}}{5}+20 x^{2}+3 x +12}\) | \(19\) |
risch | \({\mathrm e}^{\frac {x \,{\mathrm e}^{x -2}}{5}+20 x^{2}+3 x +12}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 18, normalized size = 0.62 \begin {gather*} e^{\left (20 \, x^{2} + \frac {1}{5} \, x e^{\left (x - 2\right )} + 3 \, x + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 21, normalized size = 0.72 \begin {gather*} {\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{12}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^x}{5}}\,{\mathrm {e}}^{20\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.66 \begin {gather*} e^{20 x^{2} + \frac {x e^{x - 2}}{5} + 3 x + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________