Optimal. Leaf size=22 \[ \frac {3}{\left (1+\frac {1}{x}-x^4+\frac {\log ^2(2)}{x^2}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.66, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 4, integrand size = 129, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {1594, 6688, 12, 1588} \begin {gather*} \frac {3 x^4}{\left (-x^6+x^2+x+\log ^2(2)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1588
Rule 1594
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3 \left (6 x+24 x^6+12 \log ^2(2)\right )}{x^3+3 x^4+3 x^5+x^6-3 x^8-6 x^9-3 x^{10}+3 x^{13}+3 x^{14}-x^{18}+\left (3 x^2+6 x^3+3 x^4-6 x^7-6 x^8+3 x^{12}\right ) \log ^2(2)+\left (3 x+3 x^2-3 x^6\right ) \log ^4(2)+\log ^6(2)} \, dx\\ &=\int \frac {6 x^3 \left (x+4 x^6+2 \log ^2(2)\right )}{\left (x+x^2-x^6+\log ^2(2)\right )^3} \, dx\\ &=6 \int \frac {x^3 \left (x+4 x^6+2 \log ^2(2)\right )}{\left (x+x^2-x^6+\log ^2(2)\right )^3} \, dx\\ &=\frac {3 x^4}{\left (x+x^2-x^6+\log ^2(2)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.95 \begin {gather*} \frac {3 x^4}{\left (x+x^2-x^6+\log ^2(2)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.02, size = 54, normalized size = 2.45 \begin {gather*} \frac {3 \, x^{4}}{x^{12} - 2 \, x^{8} - 2 \, x^{7} + x^{4} + \log \relax (2)^{4} + 2 \, x^{3} - 2 \, {\left (x^{6} - x^{2} - x\right )} \log \relax (2)^{2} + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 25, normalized size = 1.14 \begin {gather*} \frac {3 \, x^{4}}{{\left (x^{6} - x^{2} - \log \relax (2)^{2} - x\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 22, normalized size = 1.00
method | result | size |
default | \(\frac {3 x^{4}}{\left (-x^{6}+\ln \relax (2)^{2}+x^{2}+x \right )^{2}}\) | \(22\) |
norman | \(\frac {3 x^{4}}{\left (-x^{6}+\ln \relax (2)^{2}+x^{2}+x \right )^{2}}\) | \(22\) |
gosper | \(\frac {3 x^{4}}{x^{12}-2 x^{6} \ln \relax (2)^{2}-2 x^{8}-2 x^{7}+\ln \relax (2)^{4}+2 x^{2} \ln \relax (2)^{2}+x^{4}+2 x \ln \relax (2)^{2}+2 x^{3}+x^{2}}\) | \(62\) |
risch | \(\frac {3 x^{4}}{x^{12}-2 x^{6} \ln \relax (2)^{2}-2 x^{8}-2 x^{7}+\ln \relax (2)^{4}+2 x^{2} \ln \relax (2)^{2}+x^{4}+2 x \ln \relax (2)^{2}+2 x^{3}+x^{2}}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 61, normalized size = 2.77 \begin {gather*} \frac {3 \, x^{4}}{x^{12} - 2 \, x^{8} - 2 \, x^{6} \log \relax (2)^{2} - 2 \, x^{7} + x^{4} + \log \relax (2)^{4} + {\left (2 \, \log \relax (2)^{2} + 1\right )} x^{2} + 2 \, x^{3} + 2 \, x \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 21, normalized size = 0.95 \begin {gather*} \frac {3\,x^4}{{\left (-x^6+x^2+x+{\ln \relax (2)}^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 9.61, size = 61, normalized size = 2.77 \begin {gather*} \frac {3 x^{4}}{x^{12} - 2 x^{8} - 2 x^{7} - 2 x^{6} \log {\relax (2 )}^{2} + x^{4} + 2 x^{3} + x^{2} \left (2 \log {\relax (2 )}^{2} + 1\right ) + 2 x \log {\relax (2 )}^{2} + \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________