Optimal. Leaf size=24 \[ x \left (e^{-10+x \left (-x+\log \left (x^2\right )\right )}+\frac {9 x^2}{4}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 49, normalized size of antiderivative = 2.04, number of steps used = 3, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12, 2288} \begin {gather*} \frac {9 x^3}{4}+\frac {e^{-x^2-10} \left (x^2\right )^x \left (-2 x^2+x \log \left (x^2\right )+2 x\right )}{\log \left (x^2\right )-2 x+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (27 e^{10} x^2+e^{-x^2+x \log \left (x^2\right )} \left (4+8 x-8 x^2+4 x \log \left (x^2\right )\right )\right ) \, dx}{4 e^{10}}\\ &=\frac {9 x^3}{4}+\frac {\int e^{-x^2+x \log \left (x^2\right )} \left (4+8 x-8 x^2+4 x \log \left (x^2\right )\right ) \, dx}{4 e^{10}}\\ &=\frac {9 x^3}{4}+\frac {e^{-10-x^2} \left (x^2\right )^x \left (2 x-2 x^2+x \log \left (x^2\right )\right )}{2-2 x+\log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.12 \begin {gather*} \frac {1}{4} \left (9 x^3+4 e^{-10-x^2} x \left (x^2\right )^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 28, normalized size = 1.17 \begin {gather*} \frac {1}{4} \, {\left (9 \, x^{3} e^{10} + 4 \, x e^{\left (-x^{2} + x \log \left (x^{2}\right )\right )}\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 28, normalized size = 1.17 \begin {gather*} \frac {1}{4} \, {\left (9 \, x^{3} e^{10} + 4 \, x e^{\left (-x^{2} + x \log \left (x^{2}\right )\right )}\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 0.92
method | result | size |
risch | \(x \left (x^{2}\right )^{x} {\mathrm e}^{-x^{2}-10}+\frac {9 x^{3}}{4}\) | \(22\) |
default | \(\frac {{\mathrm e}^{-10} \left (4 \,{\mathrm e}^{x \ln \left (x^{2}\right )-x^{2}} x +9 x^{3} {\mathrm e}^{10}\right )}{4}\) | \(33\) |
norman | \(\left (x \,{\mathrm e}^{-5} {\mathrm e}^{x \ln \left (x^{2}\right )-x^{2}}+\frac {9 x^{3} {\mathrm e}^{5}}{4}\right ) {\mathrm e}^{-5}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 27, normalized size = 1.12 \begin {gather*} \frac {1}{4} \, {\left (9 \, x^{3} e^{10} + 4 \, x e^{\left (-x^{2} + 2 \, x \log \relax (x)\right )}\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.41, size = 21, normalized size = 0.88 \begin {gather*} \frac {9\,x^3}{4}+x\,{\mathrm {e}}^{-10}\,{\mathrm {e}}^{-x^2}\,{\left (x^2\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 0.92 \begin {gather*} \frac {9 x^{3}}{4} + \frac {x e^{- x^{2} + x \log {\left (x^{2} \right )}}}{e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________