Optimal. Leaf size=26 \[ \frac {1}{4} \left (-4-x+\frac {2}{3 x^2 \log \left (\frac {x^3}{2}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 23, normalized size of antiderivative = 0.88, number of steps used = 8, number of rules used = 5, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 6742, 2306, 2310, 2178} \begin {gather*} \frac {1}{6 x^2 \log \left (\frac {x^3}{2}\right )}-\frac {x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2310
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int \frac {-6-4 \log \left (\frac {x^3}{2}\right )-3 x^3 \log ^2\left (\frac {x^3}{2}\right )}{x^3 \log ^2\left (\frac {x^3}{2}\right )} \, dx\\ &=\frac {1}{12} \int \left (-3-\frac {6}{x^3 \log ^2\left (\frac {x^3}{2}\right )}-\frac {4}{x^3 \log \left (\frac {x^3}{2}\right )}\right ) \, dx\\ &=-\frac {x}{4}-\frac {1}{3} \int \frac {1}{x^3 \log \left (\frac {x^3}{2}\right )} \, dx-\frac {1}{2} \int \frac {1}{x^3 \log ^2\left (\frac {x^3}{2}\right )} \, dx\\ &=-\frac {x}{4}+\frac {1}{6 x^2 \log \left (\frac {x^3}{2}\right )}+\frac {1}{3} \int \frac {1}{x^3 \log \left (\frac {x^3}{2}\right )} \, dx-\frac {\left (x^3\right )^{2/3} \operatorname {Subst}\left (\int \frac {e^{-2 x/3}}{x} \, dx,x,\log \left (\frac {x^3}{2}\right )\right )}{9\ 2^{2/3} x^2}\\ &=-\frac {x}{4}-\frac {\left (x^3\right )^{2/3} \text {Ei}\left (-\frac {2}{3} \log \left (\frac {x^3}{2}\right )\right )}{9\ 2^{2/3} x^2}+\frac {1}{6 x^2 \log \left (\frac {x^3}{2}\right )}+\frac {\left (x^3\right )^{2/3} \operatorname {Subst}\left (\int \frac {e^{-2 x/3}}{x} \, dx,x,\log \left (\frac {x^3}{2}\right )\right )}{9\ 2^{2/3} x^2}\\ &=-\frac {x}{4}+\frac {1}{6 x^2 \log \left (\frac {x^3}{2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 34, normalized size = 1.31 \begin {gather*} \frac {6+x^3 \log (512)-9 x^3 \log \left (x^3\right )}{36 x^2 \log \left (\frac {x^3}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 26, normalized size = 1.00 \begin {gather*} -\frac {3 \, x^{3} \log \left (\frac {1}{2} \, x^{3}\right ) - 2}{12 \, x^{2} \log \left (\frac {1}{2} \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 17, normalized size = 0.65 \begin {gather*} -\frac {1}{4} \, x + \frac {1}{6 \, x^{2} \log \left (\frac {1}{2} \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.69
method | result | size |
risch | \(-\frac {x}{4}+\frac {1}{6 \ln \left (\frac {x^{3}}{2}\right ) x^{2}}\) | \(18\) |
norman | \(\frac {\frac {1}{6}-\frac {x^{3} \ln \left (\frac {x^{3}}{2}\right )}{4}}{x^{2} \ln \left (\frac {x^{3}}{2}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 22, normalized size = 0.85 \begin {gather*} -\frac {1}{4} \, x - \frac {1}{6 \, {\left (x^{2} \log \relax (2) - 3 \, x^{2} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.68, size = 17, normalized size = 0.65 \begin {gather*} \frac {1}{6\,x^2\,\ln \left (\frac {x^3}{2}\right )}-\frac {x}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.58 \begin {gather*} - \frac {x}{4} + \frac {1}{6 x^{2} \log {\left (\frac {x^{3}}{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________