Optimal. Leaf size=32 \[ \log \left (x^2-\log \left (1-\frac {-3+\frac {1-x}{x}-x}{2 x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 25, normalized size of antiderivative = 0.78, number of steps used = 3, number of rules used = 3, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6741, 12, 6684} \begin {gather*} \log \left (x^2-\log \left (-\frac {1}{2 x^2}+x+\frac {2}{x}+\frac {3}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1-2 x+x^2-3 x^3-3 x^4-2 x^5\right )}{x \left (1-4 x-3 x^2-2 x^3\right ) \left (x^2-\log \left (\frac {3}{2}-\frac {1}{2 x^2}+\frac {2}{x}+x\right )\right )} \, dx\\ &=2 \int \frac {1-2 x+x^2-3 x^3-3 x^4-2 x^5}{x \left (1-4 x-3 x^2-2 x^3\right ) \left (x^2-\log \left (\frac {3}{2}-\frac {1}{2 x^2}+\frac {2}{x}+x\right )\right )} \, dx\\ &=\log \left (x^2-\log \left (\frac {3}{2}-\frac {1}{2 x^2}+\frac {2}{x}+x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.03, size = 25, normalized size = 0.78 \begin {gather*} \log \left (x^2-\log \left (\frac {3}{2}-\frac {1}{2 x^2}+\frac {2}{x}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 28, normalized size = 0.88 \begin {gather*} \log \left (-x^{2} + \log \left (\frac {2 \, x^{3} + 3 \, x^{2} + 4 \, x - 1}{2 \, x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 28, normalized size = 0.88 \begin {gather*} \log \left (-x^{2} + \log \left (\frac {2 \, x^{3} + 3 \, x^{2} + 4 \, x - 1}{2 \, x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 0.91
method | result | size |
norman | \(\ln \left (x^{2}-\ln \left (\frac {2 x^{3}+3 x^{2}+4 x -1}{2 x^{2}}\right )\right )\) | \(29\) |
risch | \(\ln \left (-x^{2}+\ln \left (\frac {2 x^{3}+3 x^{2}+4 x -1}{2 x^{2}}\right )\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 31, normalized size = 0.97 \begin {gather*} \log \left (-x^{2} - \log \relax (2) + \log \left (2 \, x^{3} + 3 \, x^{2} + 4 \, x - 1\right ) - 2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.94, size = 25, normalized size = 0.78 \begin {gather*} \ln \left (\ln \left (\frac {x^3+\frac {3\,x^2}{2}+2\,x-\frac {1}{2}}{x^2}\right )-x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 26, normalized size = 0.81 \begin {gather*} \log {\left (- x^{2} + \log {\left (\frac {x^{3} + \frac {3 x^{2}}{2} + 2 x - \frac {1}{2}}{x^{2}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________