Optimal. Leaf size=21 \[ 16 \left (-e^x+x\right )^2 (2-\log (2)-\log (15)) \]
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 55, normalized size of antiderivative = 2.62, number of steps used = 8, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6, 2194, 2187, 2176} \begin {gather*} 16 x^2 (2-\log (30))-32 e^x (x (2-\log (30))+2-\log (30))+32 e^x (2-\log (30))+16 e^{2 x} (2-\log (30)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2176
Rule 2187
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (x (64-32 \log (2))+e^{2 x} (64-32 \log (2)-32 \log (15))-32 x \log (15)+e^x (-64-64 x+(32+32 x) \log (2)+(32+32 x) \log (15))\right ) \, dx\\ &=\int \left (e^{2 x} (64-32 \log (2)-32 \log (15))+x (64-32 \log (2)-32 \log (15))+e^x (-64-64 x+(32+32 x) \log (2)+(32+32 x) \log (15))\right ) \, dx\\ &=16 x^2 (2-\log (30))+(32 (2-\log (30))) \int e^{2 x} \, dx+\int e^x (-64-64 x+(32+32 x) \log (2)+(32+32 x) \log (15)) \, dx\\ &=16 e^{2 x} (2-\log (30))+16 x^2 (2-\log (30))+\int e^x (-64-64 x+(32+32 x) (\log (2)+\log (15))) \, dx\\ &=16 e^{2 x} (2-\log (30))+16 x^2 (2-\log (30))+\int e^x (-32 (2-\log (30))-32 x (2-\log (30))) \, dx\\ &=16 e^{2 x} (2-\log (30))+16 x^2 (2-\log (30))-32 e^x (2+x (2-\log (30))-\log (30))+(32 (2-\log (30))) \int e^x \, dx\\ &=32 e^x (2-\log (30))+16 e^{2 x} (2-\log (30))+16 x^2 (2-\log (30))-32 e^x (2+x (2-\log (30))-\log (30))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.71 \begin {gather*} -16 \left (e^x-x\right )^2 (-2+\log (30)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 48, normalized size = 2.29 \begin {gather*} -16 \, x^{2} \log \left (15\right ) - 16 \, x^{2} \log \relax (2) + 32 \, x^{2} - 16 \, {\left (\log \left (15\right ) + \log \relax (2) - 2\right )} e^{\left (2 \, x\right )} + 32 \, {\left (x \log \left (15\right ) + x \log \relax (2) - 2 \, x\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 48, normalized size = 2.29 \begin {gather*} -16 \, x^{2} \log \left (15\right ) - 16 \, x^{2} \log \relax (2) + 32 \, x^{2} - 16 \, {\left (\log \left (15\right ) + \log \relax (2) - 2\right )} e^{\left (2 \, x\right )} + 32 \, {\left (x \log \left (15\right ) + x \log \relax (2) - 2 \, x\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 45, normalized size = 2.14
method | result | size |
norman | \(\left (-16 \ln \left (15\right )-16 \ln \relax (2)+32\right ) x^{2}+\left (-16 \ln \left (15\right )-16 \ln \relax (2)+32\right ) {\mathrm e}^{2 x}+\left (32 \ln \left (15\right )+32 \ln \relax (2)-64\right ) x \,{\mathrm e}^{x}\) | \(45\) |
default | \(-16 \ln \relax (2) {\mathrm e}^{2 x}-16 \,{\mathrm e}^{2 x} \ln \left (15\right )+32 \,{\mathrm e}^{2 x}-64 \,{\mathrm e}^{x} x +32 x \ln \relax (2) {\mathrm e}^{x}+32 \,{\mathrm e}^{x} \ln \left (15\right ) x +32 x^{2}-16 x^{2} \ln \relax (2)-16 x^{2} \ln \left (15\right )\) | \(62\) |
risch | \(-16 \ln \relax (2) {\mathrm e}^{2 x}-16 \,{\mathrm e}^{2 x} \ln \relax (5)-16 \,{\mathrm e}^{2 x} \ln \relax (3)+32 \,{\mathrm e}^{2 x}+32 \left (\ln \relax (2)+\ln \relax (5)+\ln \relax (3)-2\right ) x \,{\mathrm e}^{x}-16 x^{2} \ln \relax (5)-16 x^{2} \ln \relax (3)-16 x^{2} \ln \relax (2)+32 x^{2}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 45, normalized size = 2.14 \begin {gather*} 32 \, x {\left (\log \relax (5) + \log \relax (3) + \log \relax (2) - 2\right )} e^{x} - 16 \, x^{2} \log \left (15\right ) - 16 \, x^{2} \log \relax (2) + 32 \, x^{2} - 16 \, {\left (\log \left (15\right ) + \log \relax (2) - 2\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 16, normalized size = 0.76 \begin {gather*} -{\left (x-{\mathrm {e}}^x\right )}^2\,\left (16\,\ln \left (30\right )-32\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.16, size = 51, normalized size = 2.43 \begin {gather*} x^{2} \left (- 16 \log {\left (15 \right )} - 16 \log {\relax (2 )} + 32\right ) + \left (- 64 x + 32 x \log {\relax (2 )} + 32 x \log {\left (15 \right )}\right ) e^{x} + \left (- 16 \log {\left (15 \right )} - 16 \log {\relax (2 )} + 32\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________