Optimal. Leaf size=32 \[ e^{\frac {4 (3+x) \left (-(3-2 x)^2+x\right )}{x \left (\frac {1}{x}+x-\log (5)\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 6.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \left (120+224 x-168 x^2-16 x^4+\left (-108-4 x^2+32 x^3\right ) \log (5)\right )}{1+2 x^2+x^4+\left (-2 x-2 x^3\right ) \log (5)+x^2 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \left (120+224 x-168 x^2-16 x^4+\left (-108-4 x^2+32 x^3\right ) \log (5)\right )}{1+x^4+\left (-2 x-2 x^3\right ) \log (5)+x^2 \left (2+\log ^2(5)\right )} \, dx\\ &=\int \frac {e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \left (224 x-16 x^4+12 (10-9 \log (5))+32 x^3 \log (5)-4 x^2 (42+\log (5))\right )}{1+x^4-2 x \log (5)-2 x^3 \log (5)+x^2 \left (2+\log ^2(5)\right )} \, dx\\ &=\int \left (-16 e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}}-\frac {4 e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \left (-34-8 x (7-\log (5))+27 \log (5)+x^2 \left (34+\log (5)-4 \log ^2(5)\right )\right )}{1+x^4-2 x \log (5)-2 x^3 \log (5)+x^2 \left (2+\log ^2(5)\right )}\right ) \, dx\\ &=-\left (4 \int \frac {e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \left (-34-8 x (7-\log (5))+27 \log (5)+x^2 \left (34+\log (5)-4 \log ^2(5)\right )\right )}{1+x^4-2 x \log (5)-2 x^3 \log (5)+x^2 \left (2+\log ^2(5)\right )} \, dx\right )-16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\\ &=-\left (4 \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) \left (-34-8 x (7-\log (5))+27 \log (5)+x^2 \left (34+\log (5)-4 \log ^2(5)\right )\right )}{\left (1+x^2-x \log (5)\right )^2} \, dx\right )-16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\\ &=-\left (4 \int \left (\frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) \left (34+\log (5)-4 \log ^2(5)\right )}{1+x^2-x \log (5)}+\frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) (2-\log (5)) \left (-2 (17+2 \log (5))-x \left (28-7 \log (5)-4 \log ^2(5)\right )\right )}{\left (1+x^2-x \log (5)\right )^2}\right ) \, dx\right )-16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\\ &=-\left (16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\right )-(4 (2-\log (5))) \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) \left (-2 (17+2 \log (5))-x \left (28-7 \log (5)-4 \log ^2(5)\right )\right )}{\left (1+x^2-x \log (5)\right )^2} \, dx-\left (4 \left (34+\log (5)-4 \log ^2(5)\right )\right ) \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right )}{1+x^2-x \log (5)} \, dx\\ &=-\left (16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\right )-(4 (2-\log (5))) \int \left (\frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) x \left (-28+7 \log (5)+4 \log ^2(5)\right )}{\left (1+x^2-x \log (5)\right )^2}-\frac {2 \exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) (17+\log (25))}{\left (1+x^2-x \log (5)\right )^2}\right ) \, dx-\left (4 \left (34+\log (5)-4 \log ^2(5)\right )\right ) \int \left (\frac {2 i \exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right )}{\sqrt {4-\log ^2(5)} \left (2 x-\log (5)+i \sqrt {4-\log ^2(5)}\right )}+\frac {2 i \exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right )}{\sqrt {4-\log ^2(5)} \left (-2 x+\log (5)+i \sqrt {4-\log ^2(5)}\right )}\right ) \, dx\\ &=-\left (16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\right )+\left (4 (2-\log (5)) \left (28-7 \log (5)-4 \log ^2(5)\right )\right ) \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right ) x}{\left (1+x^2-x \log (5)\right )^2} \, dx-\frac {\left (8 i \left (34+\log (5)-4 \log ^2(5)\right )\right ) \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right )}{2 x-\log (5)+i \sqrt {4-\log ^2(5)}} \, dx}{\sqrt {4-\log ^2(5)}}-\frac {\left (8 i \left (34+\log (5)-4 \log ^2(5)\right )\right ) \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right )}{-2 x+\log (5)+i \sqrt {4-\log ^2(5)}} \, dx}{\sqrt {4-\log ^2(5)}}+(8 (2-\log (5)) (17+\log (25))) \int \frac {\exp \left (-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}\right )}{\left (1+x^2-x \log (5)\right )^2} \, dx\\ &=-\left (16 \int e^{\frac {108-120 x-4 x^2+16 x^3}{-1-x^2+x \log (5)}} \, dx\right )+\left (4 (2-\log (5)) \left (28-7 \log (5)-4 \log ^2(5)\right )\right ) \int \left (-\frac {2 e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}} \left (\log (5)-i \sqrt {4-\log ^2(5)}\right )}{\left (4-\log ^2(5)\right ) \left (2 x-\log (5)+i \sqrt {4-\log ^2(5)}\right )^2}+\frac {2 i e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}} \log (5)}{\left (4-\log ^2(5)\right )^{3/2} \left (2 x-\log (5)+i \sqrt {4-\log ^2(5)}\right )}-\frac {2 e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}} \left (\log (5)+i \sqrt {4-\log ^2(5)}\right )}{\left (4-\log ^2(5)\right ) \left (-2 x+\log (5)+i \sqrt {4-\log ^2(5)}\right )^2}+\frac {2 i e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}} \log (5)}{\left (4-\log ^2(5)\right )^{3/2} \left (-2 x+\log (5)+i \sqrt {4-\log ^2(5)}\right )}\right ) \, dx-\frac {\left (8 i \left (34+\log (5)-4 \log ^2(5)\right )\right ) \int \frac {e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}}}{2 x-\log (5)+i \sqrt {4-\log ^2(5)}} \, dx}{\sqrt {4-\log ^2(5)}}-\frac {\left (8 i \left (34+\log (5)-4 \log ^2(5)\right )\right ) \int \frac {e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}}}{-2 x+\log (5)+i \sqrt {4-\log ^2(5)}} \, dx}{\sqrt {4-\log ^2(5)}}+(8 (2-\log (5)) (17+\log (25))) \int \left (-\frac {4 e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}}}{\left (4-\log ^2(5)\right ) \left (2 x-\log (5)+i \sqrt {4-\log ^2(5)}\right )^2}+\frac {4 i e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}}}{\left (4-\log ^2(5)\right )^{3/2} \left (2 x-\log (5)+i \sqrt {4-\log ^2(5)}\right )}-\frac {4 e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}}}{\left (4-\log ^2(5)\right ) \left (-2 x+\log (5)+i \sqrt {4-\log ^2(5)}\right )^2}+\frac {4 i e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}}}{\left (4-\log ^2(5)\right )^{3/2} \left (-2 x+\log (5)+i \sqrt {4-\log ^2(5)}\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.05, size = 31, normalized size = 0.97 \begin {gather*} e^{-\frac {4 \left (27-30 x-x^2+4 x^3\right )}{1+x^2-x \log (5)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 30, normalized size = 0.94 \begin {gather*} e^{\left (-\frac {4 \, {\left (4 \, x^{3} - x^{2} - 30 \, x + 27\right )}}{x^{2} - x \log \relax (5) + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 65, normalized size = 2.03 \begin {gather*} e^{\left (-\frac {16 \, x^{3}}{x^{2} - x \log \relax (5) + 1} + \frac {4 \, x^{2}}{x^{2} - x \log \relax (5) + 1} + \frac {120 \, x}{x^{2} - x \log \relax (5) + 1} - \frac {108}{x^{2} - x \log \relax (5) + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 28, normalized size = 0.88
method | result | size |
risch | \({\mathrm e}^{\frac {4 \left (x -1\right ) \left (4 x -9\right ) \left (3+x \right )}{x \ln \relax (5)-x^{2}-1}}\) | \(28\) |
gosper | \({\mathrm e}^{\frac {16 x^{3}-4 x^{2}-120 x +108}{x \ln \relax (5)-x^{2}-1}}\) | \(32\) |
norman | \(\frac {x \ln \relax (5) {\mathrm e}^{\frac {16 x^{3}-4 x^{2}-120 x +108}{x \ln \relax (5)-x^{2}-1}}-x^{2} {\mathrm e}^{\frac {16 x^{3}-4 x^{2}-120 x +108}{x \ln \relax (5)-x^{2}-1}}-{\mathrm e}^{\frac {16 x^{3}-4 x^{2}-120 x +108}{x \ln \relax (5)-x^{2}-1}}}{x \ln \relax (5)-x^{2}-1}\) | \(117\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.17, size = 89, normalized size = 2.78 \begin {gather*} \frac {1}{152587890625} \, e^{\left (-\frac {16 \, x \log \relax (5)^{2}}{x^{2} - x \log \relax (5) + 1} - 16 \, x + \frac {4 \, x \log \relax (5)}{x^{2} - x \log \relax (5) + 1} + \frac {136 \, x}{x^{2} - x \log \relax (5) + 1} + \frac {16 \, \log \relax (5)}{x^{2} - x \log \relax (5) + 1} - \frac {112}{x^{2} - x \log \relax (5) + 1} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.76, size = 68, normalized size = 2.12 \begin {gather*} {\mathrm {e}}^{\frac {120\,x}{x^2-\ln \relax (5)\,x+1}}\,{\mathrm {e}}^{\frac {4\,x^2}{x^2-\ln \relax (5)\,x+1}}\,{\mathrm {e}}^{-\frac {16\,x^3}{x^2-\ln \relax (5)\,x+1}}\,{\mathrm {e}}^{-\frac {108}{x^2-\ln \relax (5)\,x+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.07, size = 26, normalized size = 0.81 \begin {gather*} e^{\frac {16 x^{3} - 4 x^{2} - 120 x + 108}{- x^{2} + x \log {\relax (5 )} - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________