Optimal. Leaf size=23 \[ \frac {3}{x+\frac {5+x+2 x^2+\log (\log (5))}{e^{71/25}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 28, normalized size of antiderivative = 1.22, number of steps used = 4, number of rules used = 4, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6, 1680, 12, 261} \begin {gather*} \frac {3 e^{71/25}}{2 x^2+\left (1+e^{71/25}\right ) x+5+\log (\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 e^{142/25}+e^{71/25} (-3-12 x)}{25+10 x+\left (21+e^{142/25}\right ) x^2+4 x^3+4 x^4+e^{71/25} \left (10 x+2 x^2+4 x^3\right )+\left (10+2 x+2 e^{71/25} x+4 x^2\right ) \log (\log (5))+\log ^2(\log (5))} \, dx\\ &=\operatorname {Subst}\left (\int -\frac {768 e^{71/25} x}{\left (39-2 e^{71/25}-e^{142/25}+16 x^2+8 \log (\log (5))\right )^2} \, dx,x,\frac {1}{16} \left (4+4 e^{71/25}\right )+x\right )\\ &=-\left (\left (768 e^{71/25}\right ) \operatorname {Subst}\left (\int \frac {x}{\left (39-2 e^{71/25}-e^{142/25}+16 x^2+8 \log (\log (5))\right )^2} \, dx,x,\frac {1}{16} \left (4+4 e^{71/25}\right )+x\right )\right )\\ &=\frac {3 e^{71/25}}{5+\left (1+e^{71/25}\right ) x+2 x^2+\log (\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 1.17 \begin {gather*} \frac {3 e^{71/25}}{5+x+e^{71/25} x+2 x^2+\log (\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 21, normalized size = 0.91 \begin {gather*} \frac {3 \, e^{\frac {71}{25}}}{2 \, x^{2} + x e^{\frac {71}{25}} + x + \log \left (\log \relax (5)\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 19, normalized size = 0.83 \begin {gather*} -2.32272982294142083457 \times 10^{6} \, \log \left (x + 8.74478923391886229064\right ) + 2.32272935514670354111 \times 10^{6} \, \log \left (x + 8.74478792300523420934\right ) + 1.32459894481542 \times 10^{15} \, \log \left (x + 0.313094190110780\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 22, normalized size = 0.96
method | result | size |
gosper | \(\frac {3 \,{\mathrm e}^{\frac {71}{25}}}{x \,{\mathrm e}^{\frac {71}{25}}+2 x^{2}+\ln \left (\ln \relax (5)\right )+x +5}\) | \(22\) |
norman | \(\frac {3 \,{\mathrm e}^{\frac {71}{25}}}{x \,{\mathrm e}^{\frac {71}{25}}+2 x^{2}+\ln \left (\ln \relax (5)\right )+x +5}\) | \(22\) |
risch | \(\frac {3 \,{\mathrm e}^{\frac {71}{25}}}{x \,{\mathrm e}^{\frac {71}{25}}+2 x^{2}+\ln \left (\ln \relax (5)\right )+x +5}\) | \(22\) |
default | \(\frac {3 \,{\mathrm e}^{\frac {71}{25}} \left (\munderset {\textit {\_R} =\RootOf \left (4 \textit {\_Z}^{4}+\left (4 \,{\mathrm e}^{\frac {71}{25}}+4\right ) \textit {\_Z}^{3}+\left ({\mathrm e}^{\frac {142}{25}}+2 \,{\mathrm e}^{\frac {71}{25}}+4 \ln \left (\ln \relax (5)\right )+21\right ) \textit {\_Z}^{2}+\left (2 \ln \left (\ln \relax (5)\right ) {\mathrm e}^{\frac {71}{25}}+10 \,{\mathrm e}^{\frac {71}{25}}+2 \ln \left (\ln \relax (5)\right )+10\right ) \textit {\_Z} +25+\ln \left (\ln \relax (5)\right )^{2}+10 \ln \left (\ln \relax (5)\right )\right )}{\sum }\frac {\left (-{\mathrm e}^{\frac {71}{25}}-4 \textit {\_R} -1\right ) \ln \left (x -\textit {\_R} \right )}{5+\textit {\_R} \,{\mathrm e}^{\frac {142}{25}}+6 \,{\mathrm e}^{\frac {71}{25}} \textit {\_R}^{2}+8 \textit {\_R}^{3}+\ln \left (\ln \relax (5)\right ) {\mathrm e}^{\frac {71}{25}}+2 \textit {\_R} \,{\mathrm e}^{\frac {71}{25}}+4 \textit {\_R} \ln \left (\ln \relax (5)\right )+6 \textit {\_R}^{2}+5 \,{\mathrm e}^{\frac {71}{25}}+\ln \left (\ln \relax (5)\right )+21 \textit {\_R}}\right )}{2}\) | \(141\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 22, normalized size = 0.96 \begin {gather*} \frac {3 \, e^{\frac {71}{25}}}{2 \, x^{2} + x {\left (e^{\frac {71}{25}} + 1\right )} + \log \left (\log \relax (5)\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 22, normalized size = 0.96 \begin {gather*} \frac {3\,{\mathrm {e}}^{71/25}}{2\,x^2+\left ({\mathrm {e}}^{71/25}+1\right )\,x+\ln \left (\ln \relax (5)\right )+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.71, size = 26, normalized size = 1.13 \begin {gather*} \frac {3 e^{\frac {71}{25}}}{2 x^{2} + x \left (1 + e^{\frac {71}{25}}\right ) + \log {\left (\log {\relax (5 )} \right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________