Optimal. Leaf size=28 \[ -4+\frac {1}{2 x}-x+\frac {5 x}{e^4 (-4+x) (-2+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 35, normalized size of antiderivative = 1.25, number of steps used = 3, number of rules used = 2, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {12, 2074} \begin {gather*} -x+\frac {5}{e^4 (2-x)}-\frac {10}{e^4 (4-x)}+\frac {1}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {80 x^2-10 x^4+e^4 \left (-64+96 x-180 x^2+204 x^3-105 x^4+24 x^5-2 x^6\right )}{128 x^2-192 x^3+104 x^4-24 x^5+2 x^6} \, dx}{e^4}\\ &=\frac {\int \left (-e^4-\frac {10}{(-4+x)^2}+\frac {5}{(-2+x)^2}-\frac {e^4}{2 x^2}\right ) \, dx}{e^4}\\ &=\frac {5}{e^4 (2-x)}-\frac {10}{e^4 (4-x)}+\frac {1}{2 x}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 27, normalized size = 0.96 \begin {gather*} \frac {1}{2 x}-x+\frac {5 x}{e^4 \left (8-6 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 48, normalized size = 1.71 \begin {gather*} \frac {{\left (10 \, x^{2} - {\left (2 \, x^{4} - 12 \, x^{3} + 15 \, x^{2} + 6 \, x - 8\right )} e^{4}\right )} e^{\left (-4\right )}}{2 \, {\left (x^{3} - 6 \, x^{2} + 8 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 47, normalized size = 1.68 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x e^{4} - \frac {x^{2} e^{4} + 10 \, x^{2} - 6 \, x e^{4} + 8 \, e^{4}}{x^{3} - 6 \, x^{2} + 8 \, x}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 33, normalized size = 1.18
method | result | size |
default | \(\frac {{\mathrm e}^{-4} \left (-2 x \,{\mathrm e}^{4}-\frac {10}{x -2}+\frac {20}{x -4}+\frac {{\mathrm e}^{4}}{x}\right )}{2}\) | \(33\) |
norman | \(\frac {4-51 x -x^{4}-\frac {\left (-57 \,{\mathrm e}^{4}-10\right ) {\mathrm e}^{-4} x^{2}}{2}}{x \left (x^{2}-6 x +8\right )}\) | \(40\) |
risch | \(-x +\frac {{\mathrm e}^{-4} \left (\left (\frac {{\mathrm e}^{4}}{2}+5\right ) x^{2}-3 x \,{\mathrm e}^{4}+4 \,{\mathrm e}^{4}\right )}{x \left (x^{2}-6 x +8\right )}\) | \(41\) |
gosper | \(-\frac {\left (2 x^{4} {\mathrm e}^{4}-57 x^{2} {\mathrm e}^{4}+102 x \,{\mathrm e}^{4}-10 x^{2}-8 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-4}}{2 x \left (x^{2}-6 x +8\right )}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 44, normalized size = 1.57 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x e^{4} - \frac {x^{2} {\left (e^{4} + 10\right )} - 6 \, x e^{4} + 8 \, e^{4}}{x^{3} - 6 \, x^{2} + 8 \, x}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.33, size = 40, normalized size = 1.43 \begin {gather*} -x-\frac {\left (\frac {{\mathrm {e}}^{-4}\,\left (15\,{\mathrm {e}}^4-10\right )}{2}-8\right )\,x^2+3\,x-4}{x\,\left (x^2-6\,x+8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.88, size = 48, normalized size = 1.71 \begin {gather*} - x - \frac {x^{2} \left (- e^{4} - 10\right ) + 6 x e^{4} - 8 e^{4}}{2 x^{3} e^{4} - 12 x^{2} e^{4} + 16 x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________