Optimal. Leaf size=23 \[ 4 \log \left (\frac {625 \left (x+x^2\right )^2}{\left (1+e^{x^2}+\log (x)\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x+e^{x^2} \left (8+16 x-16 x^2-16 x^3\right )+(8+16 x) \log (x)}{x+x^2+e^{x^2} \left (x+x^2\right )+\left (x+x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x+e^{x^2} \left (8+16 x-16 x^2-16 x^3\right )+(8+16 x) \log (x)}{x (1+x) \left (1+e^{x^2}+\log (x)\right )} \, dx\\ &=\int \left (-\frac {8 \left (-1-2 x+2 x^2+2 x^3\right )}{x (1+x)}+\frac {8 \left (-1+2 x^2+2 x^2 \log (x)\right )}{x \left (1+e^{x^2}+\log (x)\right )}\right ) \, dx\\ &=-\left (8 \int \frac {-1-2 x+2 x^2+2 x^3}{x (1+x)} \, dx\right )+8 \int \frac {-1+2 x^2+2 x^2 \log (x)}{x \left (1+e^{x^2}+\log (x)\right )} \, dx\\ &=-\left (8 \int \left (\frac {1}{-1-x}-\frac {1}{x}+2 x\right ) \, dx\right )+8 \int \left (-\frac {1}{x \left (1+e^{x^2}+\log (x)\right )}+\frac {2 x}{1+e^{x^2}+\log (x)}+\frac {2 x \log (x)}{1+e^{x^2}+\log (x)}\right ) \, dx\\ &=-8 x^2+8 \log (x)+8 \log (1+x)-8 \int \frac {1}{x \left (1+e^{x^2}+\log (x)\right )} \, dx+16 \int \frac {x}{1+e^{x^2}+\log (x)} \, dx+16 \int \frac {x \log (x)}{1+e^{x^2}+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 21, normalized size = 0.91 \begin {gather*} 8 \left (\log (x)+\log (1+x)-\log \left (1+e^{x^2}+\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 20, normalized size = 0.87 \begin {gather*} 8 \, \log \left (x^{2} + x\right ) - 8 \, \log \left (e^{\left (x^{2}\right )} + \log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 0.96 \begin {gather*} 8 \, \log \left (x + 1\right ) + 8 \, \log \relax (x) - 8 \, \log \left (e^{\left (x^{2}\right )} + \log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.91
method | result | size |
risch | \(8 \ln \left (x^{2}+x \right )-8 \ln \left (\ln \relax (x )+{\mathrm e}^{x^{2}}+1\right )\) | \(21\) |
norman | \(8 \ln \relax (x )+8 \ln \left (x +1\right )-8 \ln \left (\ln \relax (x )+{\mathrm e}^{x^{2}}+1\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 22, normalized size = 0.96 \begin {gather*} 8 \, \log \left (x + 1\right ) + 8 \, \log \relax (x) - 8 \, \log \left (e^{\left (x^{2}\right )} + \log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 20, normalized size = 0.87 \begin {gather*} 8\,\ln \left (x\,\left (x+1\right )\right )-8\,\ln \left ({\mathrm {e}}^{x^2}+\ln \relax (x)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 20, normalized size = 0.87 \begin {gather*} 8 \log {\left (x^{2} + x \right )} - 8 \log {\left (e^{x^{2}} + \log {\relax (x )} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________