Optimal. Leaf size=26 \[ 2+x+\frac {x}{\left (x+\frac {e^{-e} x}{\log (x)}\right )^2}+\frac {3 \log (x)}{2} \]
________________________________________________________________________________________
Rubi [C] time = 1.38, antiderivative size = 162, normalized size of antiderivative = 6.23, number of steps used = 15, number of rules used = 7, integrand size = 120, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {6688, 12, 6742, 14, 2306, 2309, 2178} \begin {gather*} e^{e^{-e}-2 e} \left (1-2 e^e\right ) \text {Ei}\left (-e^{-e} \left (e^e \log (x)+1\right )\right )+2 e^{e^{-e}-e} \text {Ei}\left (-e^{-e} \left (e^e \log (x)+1\right )\right )-e^{e^{-e}-2 e} \text {Ei}\left (-e^{-e} \left (e^e \log (x)+1\right )\right )+x+\frac {1}{x}+\frac {3 \log (x)}{2}-\frac {2-e^{-e}}{x \left (e^e \log (x)+1\right )}-\frac {e^{-e}}{x \left (e^e \log (x)+1\right )}+\frac {1}{x \left (e^e \log (x)+1\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x (3+2 x)+e^e \left (4 e^e+3 x (3+2 x)\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2 \left (1+e^e \log (x)\right )^3} \, dx\\ &=\frac {1}{2} \int \frac {x (3+2 x)+e^e \left (4 e^e+3 x (3+2 x)\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{x^2 \left (1+e^e \log (x)\right )^3} \, dx\\ &=\frac {1}{2} \int \left (\frac {-2+3 x+2 x^2}{x^2}-\frac {4 e^e}{x^2 \left (1+e^e \log (x)\right )^3}+\frac {2 \left (-1+2 e^e\right )}{x^2 \left (1+e^e \log (x)\right )^2}+\frac {4}{x^2 \left (1+e^e \log (x)\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-2+3 x+2 x^2}{x^2} \, dx+2 \int \frac {1}{x^2 \left (1+e^e \log (x)\right )} \, dx-\left (2 e^e\right ) \int \frac {1}{x^2 \left (1+e^e \log (x)\right )^3} \, dx+\left (-1+2 e^e\right ) \int \frac {1}{x^2 \left (1+e^e \log (x)\right )^2} \, dx\\ &=\frac {1}{x \left (1+e^e \log (x)\right )^2}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}+\frac {1}{2} \int \left (2-\frac {2}{x^2}+\frac {3}{x}\right ) \, dx+2 \operatorname {Subst}\left (\int \frac {e^{-x}}{1+e^e x} \, dx,x,\log (x)\right )+\left (-2+e^{-e}\right ) \int \frac {1}{x^2 \left (1+e^e \log (x)\right )} \, dx+\int \frac {1}{x^2 \left (1+e^e \log (x)\right )^2} \, dx\\ &=\frac {1}{x}+x+2 e^{-e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+\frac {3 \log (x)}{2}+\frac {1}{x \left (1+e^e \log (x)\right )^2}-\frac {e^{-e}}{x \left (1+e^e \log (x)\right )}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}-e^{-e} \int \frac {1}{x^2 \left (1+e^e \log (x)\right )} \, dx+\left (-2+e^{-e}\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{1+e^e x} \, dx,x,\log (x)\right )\\ &=\frac {1}{x}+x+2 e^{-e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+e^{-2 e+e^{-e}} \left (1-2 e^e\right ) \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+\frac {3 \log (x)}{2}+\frac {1}{x \left (1+e^e \log (x)\right )^2}-\frac {e^{-e}}{x \left (1+e^e \log (x)\right )}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}-e^{-e} \operatorname {Subst}\left (\int \frac {e^{-x}}{1+e^e x} \, dx,x,\log (x)\right )\\ &=\frac {1}{x}+x-e^{-2 e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+2 e^{-e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+e^{-2 e+e^{-e}} \left (1-2 e^e\right ) \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+\frac {3 \log (x)}{2}+\frac {1}{x \left (1+e^e \log (x)\right )^2}-\frac {e^{-e}}{x \left (1+e^e \log (x)\right )}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 42, normalized size = 1.62 \begin {gather*} \frac {1}{2} \left (3 \log (x)+2 \left (x-\frac {2}{x+e^e x \log (x)}+\frac {1+\frac {1}{\left (1+e^e \log (x)\right )^2}}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 82, normalized size = 3.15 \begin {gather*} \frac {3 \, x e^{\left (2 \, e\right )} \log \relax (x)^{3} + 2 \, {\left ({\left (x^{2} + 1\right )} e^{\left (2 \, e\right )} + 3 \, x e^{e}\right )} \log \relax (x)^{2} + 2 \, x^{2} + {\left (4 \, x^{2} e^{e} + 3 \, x\right )} \log \relax (x)}{2 \, {\left (x e^{\left (2 \, e\right )} \log \relax (x)^{2} + 2 \, x e^{e} \log \relax (x) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 93, normalized size = 3.58 \begin {gather*} \frac {2 \, x^{2} e^{\left (2 \, e\right )} \log \relax (x)^{2} + 3 \, x e^{\left (2 \, e\right )} \log \relax (x)^{3} + 4 \, x^{2} e^{e} \log \relax (x) + 6 \, x e^{e} \log \relax (x)^{2} + 2 \, e^{\left (2 \, e\right )} \log \relax (x)^{2} + 2 \, x^{2} + 3 \, x \log \relax (x)}{2 \, {\left (x e^{\left (2 \, e\right )} \log \relax (x)^{2} + 2 \, x e^{e} \log \relax (x) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 43, normalized size = 1.65
method | result | size |
risch | \(\frac {3 x \ln \relax (x )+2 x^{2}+2}{2 x}-\frac {2 \,{\mathrm e}^{{\mathrm e}} \ln \relax (x )+1}{x \left ({\mathrm e}^{{\mathrm e}} \ln \relax (x )+1\right )^{2}}\) | \(43\) |
norman | \(\frac {x^{2}+{\mathrm e}^{2 \,{\mathrm e}} \ln \relax (x )^{2}+x^{2} {\mathrm e}^{2 \,{\mathrm e}} \ln \relax (x )^{2}+\frac {3 \,{\mathrm e}^{2 \,{\mathrm e}} x \ln \relax (x )^{3}}{2}+\frac {3 x \ln \relax (x )}{2}+3 \,{\mathrm e}^{{\mathrm e}} x \ln \relax (x )^{2}+2 x^{2} {\mathrm e}^{{\mathrm e}} \ln \relax (x )}{x \left ({\mathrm e}^{{\mathrm e}} \ln \relax (x )+1\right )^{2}}\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 108, normalized size = 4.15 \begin {gather*} \frac {8 \, x^{2} e^{\left (2 \, e\right )} \log \relax (x) + 4 \, x^{2} e^{e} + 4 \, {\left (x^{2} e^{\left (3 \, e\right )} + e^{\left (3 \, e\right )}\right )} \log \relax (x)^{2} + 3 \, x}{4 \, {\left (x e^{\left (3 \, e\right )} \log \relax (x)^{2} + 2 \, x e^{\left (2 \, e\right )} \log \relax (x) + x e^{e}\right )}} - \frac {3}{4 \, {\left (e^{\left (3 \, e\right )} \log \relax (x)^{2} + 2 \, e^{\left (2 \, e\right )} \log \relax (x) + e^{e}\right )}} + \frac {3}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.55, size = 178, normalized size = 6.85 \begin {gather*} x+\frac {3\,\ln \relax (x)}{2}-\frac {\frac {{\mathrm {e}}^{-3\,\mathrm {e}}}{2\,x}+\frac {{\mathrm {e}}^{-\mathrm {e}}\,{\ln \relax (x)}^2}{x}+\frac {{\mathrm {e}}^{-2\,\mathrm {e}}\,\ln \relax (x)\,\left (2\,{\mathrm {e}}^{\mathrm {e}}+3\right )}{2\,x}}{{\ln \relax (x)}^2+2\,{\mathrm {e}}^{-\mathrm {e}}\,\ln \relax (x)+{\mathrm {e}}^{-2\,\mathrm {e}}}-\frac {\frac {{\mathrm {e}}^{-3\,\mathrm {e}}\,\left (2\,{\mathrm {e}}^{2\,\mathrm {e}}+3\,{\mathrm {e}}^{\mathrm {e}}-1\right )}{2\,x}-\frac {{\mathrm {e}}^{-\mathrm {e}}\,{\ln \relax (x)}^2}{x}+\frac {{\mathrm {e}}^{-2\,\mathrm {e}}\,\ln \relax (x)\,\left (2\,{\mathrm {e}}^{\mathrm {e}}-3\right )}{2\,x}}{{\mathrm {e}}^{-\mathrm {e}}+\ln \relax (x)}-\frac {{\mathrm {e}}^{-\mathrm {e}}\,\ln \relax (x)}{x}+\frac {{\mathrm {e}}^{-2\,\mathrm {e}}\,\left (2\,{\mathrm {e}}^{2\,\mathrm {e}}+4\,{\mathrm {e}}^{\mathrm {e}}-1\right )}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 51, normalized size = 1.96 \begin {gather*} x + \frac {- 2 e^{e} \log {\relax (x )} - 1}{x e^{2 e} \log {\relax (x )}^{2} + 2 x e^{e} \log {\relax (x )} + x} + \frac {3 \log {\relax (x )}}{2} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________