Optimal. Leaf size=34 \[ e^{\frac {3}{3+\log \left (\frac {(3-x)^2 x^3}{4 \left (-x+x^2\right )^2}\right )}} x \]
________________________________________________________________________________________
Rubi [F] time = 2.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3}{3+\log \left (\frac {9 x-6 x^2+x^3}{4-8 x+4 x^2}\right )}} \left (18-36 x+6 x^2+\left (18-24 x+6 x^2\right ) \log \left (\frac {9 x-6 x^2+x^3}{4-8 x+4 x^2}\right )+\left (3-4 x+x^2\right ) \log ^2\left (\frac {9 x-6 x^2+x^3}{4-8 x+4 x^2}\right )\right )}{27-36 x+9 x^2+\left (18-24 x+6 x^2\right ) \log \left (\frac {9 x-6 x^2+x^3}{4-8 x+4 x^2}\right )+\left (3-4 x+x^2\right ) \log ^2\left (\frac {9 x-6 x^2+x^3}{4-8 x+4 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} \left (6 \left (3-6 x+x^2\right )+6 \left (3-4 x+x^2\right ) \log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )+\left (3-4 x+x^2\right ) \log ^2\left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )}{\left (3-4 x+x^2\right ) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2} \, dx\\ &=\int \left (e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}-\frac {3 e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} \left (3+x^2\right )}{(-3+x) (-1+x) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} \left (3+x^2\right )}{(-3+x) (-1+x) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2} \, dx\right )+\int e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} \, dx\\ &=-\left (3 \int \left (\frac {e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}}{\left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2}+\frac {6 e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}}{(-3+x) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2}-\frac {2 e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}}{(-1+x) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2}\right ) \, dx\right )+\int e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} \, dx\\ &=-\left (3 \int \frac {e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}}{\left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2} \, dx\right )+6 \int \frac {e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}}{(-1+x) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2} \, dx-18 \int \frac {e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}}}{(-3+x) \left (3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )\right )^2} \, dx+\int e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 0.76 \begin {gather*} e^{\frac {3}{3+\log \left (\frac {(-3+x)^2 x}{4 (-1+x)^2}\right )}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 1.00 \begin {gather*} x e^{\left (\frac {3}{\log \left (\frac {x^{3} - 6 \, x^{2} + 9 \, x}{4 \, {\left (x^{2} - 2 \, x + 1\right )}}\right ) + 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x^{2} - 4 \, x + 3\right )} \log \left (\frac {x^{3} - 6 \, x^{2} + 9 \, x}{4 \, {\left (x^{2} - 2 \, x + 1\right )}}\right )^{2} + 6 \, x^{2} + 6 \, {\left (x^{2} - 4 \, x + 3\right )} \log \left (\frac {x^{3} - 6 \, x^{2} + 9 \, x}{4 \, {\left (x^{2} - 2 \, x + 1\right )}}\right ) - 36 \, x + 18\right )} e^{\left (\frac {3}{\log \left (\frac {x^{3} - 6 \, x^{2} + 9 \, x}{4 \, {\left (x^{2} - 2 \, x + 1\right )}}\right ) + 3}\right )}}{{\left (x^{2} - 4 \, x + 3\right )} \log \left (\frac {x^{3} - 6 \, x^{2} + 9 \, x}{4 \, {\left (x^{2} - 2 \, x + 1\right )}}\right )^{2} + 9 \, x^{2} + 6 \, {\left (x^{2} - 4 \, x + 3\right )} \log \left (\frac {x^{3} - 6 \, x^{2} + 9 \, x}{4 \, {\left (x^{2} - 2 \, x + 1\right )}}\right ) - 36 \, x + 27}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 36, normalized size = 1.06
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {3}{\ln \left (\frac {x^{3}-6 x^{2}+9 x}{4 x^{2}-8 x +4}\right )+3}}\) | \(36\) |
norman | \(\frac {\ln \left (\frac {x^{3}-6 x^{2}+9 x}{4 x^{2}-8 x +4}\right ) x \,{\mathrm e}^{\frac {3}{\ln \left (\frac {x^{3}-6 x^{2}+9 x}{4 x^{2}-8 x +4}\right )+3}}+3 x \,{\mathrm e}^{\frac {3}{\ln \left (\frac {x^{3}-6 x^{2}+9 x}{4 x^{2}-8 x +4}\right )+3}}}{\ln \left (\frac {x^{3}-6 x^{2}+9 x}{4 x^{2}-8 x +4}\right )+3}\) | \(130\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {2 \, x^{3} e^{\left (-\frac {3}{2 \, \log \relax (2) + 2 \, \log \left (x - 1\right ) - 2 \, \log \left (x - 3\right ) - \log \relax (x) - 3}\right )}}{x^{2} + 3} + \frac {12 \, x^{2} e^{\left (-\frac {3}{2 \, \log \relax (2) + 2 \, \log \left (x - 1\right ) - 2 \, \log \left (x - 3\right ) - \log \relax (x) - 3}\right )}}{x^{2} + 3} - \frac {6 \, x e^{\left (-\frac {3}{2 \, \log \relax (2) + 2 \, \log \left (x - 1\right ) - 2 \, \log \left (x - 3\right ) - \log \relax (x) - 3}\right )}}{x^{2} + 3} + \int \frac {{\left (4 \, \log \relax (2)^{2} + 4 \, {\left (2 \, \log \relax (2) - 2 \, \log \left (x - 3\right ) - \log \relax (x) - 3\right )} \log \left (x - 1\right ) + 4 \, \log \left (x - 1\right )^{2} - 4 \, {\left (2 \, \log \relax (2) - \log \relax (x) - 3\right )} \log \left (x - 3\right ) + 4 \, \log \left (x - 3\right )^{2} - 2 \, {\left (2 \, \log \relax (2) - 3\right )} \log \relax (x) + \log \relax (x)^{2} - 12 \, \log \relax (2)\right )} e^{\left (-\frac {3}{2 \, \log \relax (2) + 2 \, \log \left (x - 1\right ) - 2 \, \log \left (x - 3\right ) - \log \relax (x) - 3}\right )}}{4 \, \log \relax (2)^{2} + 4 \, {\left (2 \, \log \relax (2) - 2 \, \log \left (x - 3\right ) - \log \relax (x) - 3\right )} \log \left (x - 1\right ) + 4 \, \log \left (x - 1\right )^{2} - 4 \, {\left (2 \, \log \relax (2) - \log \relax (x) - 3\right )} \log \left (x - 3\right ) + 4 \, \log \left (x - 3\right )^{2} - 2 \, {\left (2 \, \log \relax (2) - 3\right )} \log \relax (x) + \log \relax (x)^{2} - 12 \, \log \relax (2) + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {3}{\ln \left (\frac {x^3-6\,x^2+9\,x}{4\,x^2-8\,x+4}\right )+3}}\,\left (\ln \left (\frac {x^3-6\,x^2+9\,x}{4\,x^2-8\,x+4}\right )\,\left (6\,x^2-24\,x+18\right )-36\,x+{\ln \left (\frac {x^3-6\,x^2+9\,x}{4\,x^2-8\,x+4}\right )}^2\,\left (x^2-4\,x+3\right )+6\,x^2+18\right )}{\ln \left (\frac {x^3-6\,x^2+9\,x}{4\,x^2-8\,x+4}\right )\,\left (6\,x^2-24\,x+18\right )-36\,x+{\ln \left (\frac {x^3-6\,x^2+9\,x}{4\,x^2-8\,x+4}\right )}^2\,\left (x^2-4\,x+3\right )+9\,x^2+27} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 18.87, size = 29, normalized size = 0.85 \begin {gather*} x e^{\frac {3}{\log {\left (\frac {x^{3} - 6 x^{2} + 9 x}{4 x^{2} - 8 x + 4} \right )} + 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________