Optimal. Leaf size=28 \[ e^{e^{\log ^2\left (\frac {-4 e^x+x}{2 (3+x+5 (1+x))}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 10.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \left (-8+e^x (8+24 x)\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{-4 x-3 x^2+e^x (16+12 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \left (-1+e^x+3 e^x x\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{\left (4 e^x-x\right ) (4+3 x)} \, dx\\ &=8 \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \left (-1+e^x+3 e^x x\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{\left (4 e^x-x\right ) (4+3 x)} \, dx\\ &=8 \int \left (\frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) (-1+x) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 \left (4 e^x-x\right )}+\frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) (1+3 x) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 (4+3 x)}\right ) \, dx\\ &=2 \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) (-1+x) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 e^x-x} \, dx+2 \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) (1+3 x) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4+3 x} \, dx\\ &=2 \int \left (-\frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 e^x-x}+\frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) x \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 e^x-x}\right ) \, dx+2 \int \left (\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )-\frac {3 \exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4+3 x}\right ) \, dx\\ &=2 \int \exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right ) \, dx-2 \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 e^x-x} \, dx+2 \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) x \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4 e^x-x} \, dx-6 \int \frac {\exp \left (e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}+\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )\right ) \log \left (\frac {-4 e^x+x}{16+12 x}\right )}{4+3 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 22, normalized size = 0.79 \begin {gather*} e^{e^{\log ^2\left (\frac {-4 e^x+x}{16+12 x}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 20, normalized size = 0.71 \begin {gather*} e^{\left (e^{\left (\log \left (\frac {x - 4 \, e^{x}}{4 \, {\left (3 \, x + 4\right )}}\right )^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {8 \, {\left ({\left (3 \, x + 1\right )} e^{x} - 1\right )} e^{\left (\log \left (\frac {x - 4 \, e^{x}}{4 \, {\left (3 \, x + 4\right )}}\right )^{2} + e^{\left (\log \left (\frac {x - 4 \, e^{x}}{4 \, {\left (3 \, x + 4\right )}}\right )^{2}\right )}\right )} \log \left (\frac {x - 4 \, e^{x}}{4 \, {\left (3 \, x + 4\right )}}\right )}{3 \, x^{2} - 4 \, {\left (3 \, x + 4\right )} e^{x} + 4 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.61, size = 163, normalized size = 5.82
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {\left (-i \pi \mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{x}-x \right )}{x +\frac {4}{3}}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{x}-x \right )}{x +\frac {4}{3}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x +\frac {4}{3}}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{x}-x \right )}{x +\frac {4}{3}}\right )^{2} \mathrm {csgn}\left (i \left (4 \,{\mathrm e}^{x}-x \right )\right )+i \pi \,\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{x}-x \right )}{x +\frac {4}{3}}\right ) \mathrm {csgn}\left (\frac {i}{x +\frac {4}{3}}\right ) \mathrm {csgn}\left (i \left (4 \,{\mathrm e}^{x}-x \right )\right )+2 \ln \left (x +\frac {4}{3}\right )-2 \ln \left (-4 \,{\mathrm e}^{x}+x \right )+4 \ln \relax (2)+2 \ln \relax (3)\right )^{2}}{4}}}\) | \(163\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.01, size = 62, normalized size = 2.21 \begin {gather*} e^{\left (e^{\left (4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \left (3 \, x + 4\right ) + \log \left (3 \, x + 4\right )^{2} - 4 \, \log \relax (2) \log \left (x - 4 \, e^{x}\right ) - 2 \, \log \left (3 \, x + 4\right ) \log \left (x - 4 \, e^{x}\right ) + \log \left (x - 4 \, e^{x}\right )^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 19, normalized size = 0.68 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{{\ln \left (\frac {x-4\,{\mathrm {e}}^x}{12\,x+16}\right )}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________