Optimal. Leaf size=24 \[ e^4+\frac {1}{16} (x+4 x (1+2 x)-\log (\log (\log (x)))) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {12, 6688, 2302, 29} \begin {gather*} \frac {x^2}{2}+\frac {5 x}{16}-\frac {1}{16} \log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \frac {-1+\left (5 x+16 x^2\right ) \log (x) \log (\log (x))}{x \log (x) \log (\log (x))} \, dx\\ &=\frac {1}{16} \int \left (5+16 x-\frac {1}{x \log (x) \log (\log (x))}\right ) \, dx\\ &=\frac {5 x}{16}+\frac {x^2}{2}-\frac {1}{16} \int \frac {1}{x \log (x) \log (\log (x))} \, dx\\ &=\frac {5 x}{16}+\frac {x^2}{2}-\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,\log (x)\right )\\ &=\frac {5 x}{16}+\frac {x^2}{2}-\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (\log (x))\right )\\ &=\frac {5 x}{16}+\frac {x^2}{2}-\frac {1}{16} \log (\log (\log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.88 \begin {gather*} \frac {5 x}{16}+\frac {x^2}{2}-\frac {1}{16} \log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 15, normalized size = 0.62 \begin {gather*} \frac {1}{2} \, x^{2} + \frac {5}{16} \, x - \frac {1}{16} \, \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 15, normalized size = 0.62 \begin {gather*} \frac {1}{2} \, x^{2} + \frac {5}{16} \, x - \frac {1}{16} \, \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.67
method | result | size |
default | \(\frac {x^{2}}{2}+\frac {5 x}{16}-\frac {\ln \left (\ln \left (\ln \relax (x )\right )\right )}{16}\) | \(16\) |
norman | \(\frac {x^{2}}{2}+\frac {5 x}{16}-\frac {\ln \left (\ln \left (\ln \relax (x )\right )\right )}{16}\) | \(16\) |
risch | \(\frac {x^{2}}{2}+\frac {5 x}{16}-\frac {\ln \left (\ln \left (\ln \relax (x )\right )\right )}{16}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.62 \begin {gather*} \frac {1}{2} \, x^{2} + \frac {5}{16} \, x - \frac {1}{16} \, \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.36, size = 15, normalized size = 0.62 \begin {gather*} \frac {5\,x}{16}-\frac {\ln \left (\ln \left (\ln \relax (x)\right )\right )}{16}+\frac {x^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 17, normalized size = 0.71 \begin {gather*} \frac {x^{2}}{2} + \frac {5 x}{16} - \frac {\log {\left (\log {\left (\log {\relax (x )} \right )} \right )}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________