Optimal. Leaf size=30 \[ \frac {\log \left (-e^{e^{5 \left (\frac {x}{5+e^3}+x^4\right )}}+x^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 24.53, antiderivative size = 29, normalized size of antiderivative = 0.97, number of steps used = 11, number of rules used = 4, integrand size = 234, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6, 6688, 6742, 2551} \begin {gather*} \frac {\log \left (x^2-e^{e^{5 x \left (x^3+\frac {1}{5+e^3}\right )}}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2551
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10 x^2-2 e^3 x^2+\exp \left (e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}+\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}\right ) \left (5 x+100 x^4+20 e^3 x^4\right )+\left (e^{e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}} \left (-5-e^3\right )+5 x^2+e^3 x^2\right ) \log \left (-e^{e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}}+x^2\right )}{\left (-5-e^3\right ) x^4+e^{e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}} \left (5 x^2+e^3 x^2\right )} \, dx\\ &=\int \frac {\left (-10-2 e^3\right ) x^2+\exp \left (e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}+\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}\right ) \left (5 x+100 x^4+20 e^3 x^4\right )+\left (e^{e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}} \left (-5-e^3\right )+5 x^2+e^3 x^2\right ) \log \left (-e^{e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}}+x^2\right )}{\left (-5-e^3\right ) x^4+e^{e^{\frac {5 x+25 x^4+5 e^3 x^4}{5+e^3}}} \left (5 x^2+e^3 x^2\right )} \, dx\\ &=\int \left (-\frac {2}{e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2}+\frac {5 \exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (1+4 \left (5+e^3\right ) x^3\right )}{\left (5+e^3\right ) x \left (e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2\right )}-\frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {1}{e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2} \, dx\right )+\frac {5 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (1+4 \left (5+e^3\right ) x^3\right )}{x \left (e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2\right )} \, dx}{5+e^3}-\int \frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x^2} \, dx\\ &=\frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x}-2 \int \frac {1}{e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2} \, dx+\frac {5 \int \left (-\frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right )}{x \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}-\frac {4 \exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (5+e^3\right ) x^2}{-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2}\right ) \, dx}{5+e^3}-\int \frac {-2 x+\frac {5 \exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (1+4 \left (5+e^3\right ) x^3\right )}{5+e^3}}{e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}} x-x^3} \, dx\\ &=\frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x}-2 \int \frac {1}{e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2} \, dx-20 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) x^2}{-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2} \, dx-\frac {5 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right )}{x \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )} \, dx}{5+e^3}-\int \left (-\frac {2}{e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2}+\frac {5 \exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (1+4 \left (5+e^3\right ) x^3\right )}{\left (5+e^3\right ) x \left (e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2\right )}\right ) \, dx\\ &=\frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x}-20 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) x^2}{-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2} \, dx-\frac {5 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right )}{x \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )} \, dx}{5+e^3}-\frac {5 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (1+4 \left (5+e^3\right ) x^3\right )}{x \left (e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}-x^2\right )} \, dx}{5+e^3}\\ &=\frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x}-20 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) x^2}{-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2} \, dx-\frac {5 \int \frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right )}{x \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )} \, dx}{5+e^3}-\frac {5 \int \left (-\frac {\exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right )}{x \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}-\frac {4 \exp \left (e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}+5 x \left (\frac {1}{5+e^3}+x^3\right )\right ) \left (5+e^3\right ) x^2}{-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2}\right ) \, dx}{5+e^3}\\ &=\frac {\log \left (-e^{e^{5 x \left (\frac {1}{5+e^3}+x^3\right )}}+x^2\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 31, normalized size = 1.03 \begin {gather*} \frac {\log \left (-e^{e^{\frac {5 x}{5+e^3}+5 x^4}}+x^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 108, normalized size = 3.60 \begin {gather*} \frac {\log \left ({\left (x^{2} e^{\left (\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5}\right )} - e^{\left (\frac {5 \, x^{4} e^{3} + 25 \, x^{4} + {\left (e^{3} + 5\right )} e^{\left (\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5}\right )} + 5 \, x}{e^{3} + 5}\right )}\right )} e^{\left (-\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5}\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.05, size = 129, normalized size = 4.30 \begin {gather*} \frac {\log \left ({\left (x^{2} e^{\left (\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5}\right )} - e^{\left (\frac {5 \, x^{4} e^{3} + 25 \, x^{4} + 5 \, x + 5 \, e^{\left (\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5}\right )} + e^{\left (\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5} + 3\right )}}{e^{3} + 5}\right )}\right )} e^{\left (-\frac {5 \, {\left (x^{4} e^{3} + 5 \, x^{4} + x\right )}}{e^{3} + 5}\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 36, normalized size = 1.20
method | result | size |
risch | \(\frac {\ln \left (-{\mathrm e}^{{\mathrm e}^{\frac {5 x \left (x^{3} {\mathrm e}^{3}+5 x^{3}+1\right )}{{\mathrm e}^{3}+5}}}+x^{2}\right )}{x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.02, size = 47, normalized size = 1.57 \begin {gather*} \frac {\log \left (x^{2} - e^{\left (e^{\left (\frac {5 \, x^{4} e^{3}}{e^{3} + 5} + \frac {25 \, x^{4}}{e^{3} + 5} + \frac {5 \, x}{e^{3} + 5}\right )}\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.03, size = 49, normalized size = 1.63 \begin {gather*} \frac {\ln \left (x^2-{\mathrm {e}}^{{\mathrm {e}}^{\frac {5\,x^4\,{\mathrm {e}}^3}{{\mathrm {e}}^3+5}}\,{\mathrm {e}}^{\frac {5\,x}{{\mathrm {e}}^3+5}}\,{\mathrm {e}}^{\frac {25\,x^4}{{\mathrm {e}}^3+5}}}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.69, size = 31, normalized size = 1.03 \begin {gather*} \frac {\log {\left (x^{2} - e^{e^{\frac {25 x^{4} + 5 x^{4} e^{3} + 5 x}{5 + e^{3}}}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________