Optimal. Leaf size=22 \[ 3 e^x (-5+x)+\frac {8}{x}-x (-5+3 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 29, normalized size of antiderivative = 1.32, number of steps used = 6, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {14, 2176, 2194} \begin {gather*} -3 x^2+5 x-3 e^x-3 e^x (4-x)+\frac {8}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 e^x (-4+x)+\frac {-8+5 x^2-6 x^3}{x^2}\right ) \, dx\\ &=3 \int e^x (-4+x) \, dx+\int \frac {-8+5 x^2-6 x^3}{x^2} \, dx\\ &=-3 e^x (4-x)-3 \int e^x \, dx+\int \left (5-\frac {8}{x^2}-6 x\right ) \, dx\\ &=-3 e^x-3 e^x (4-x)+\frac {8}{x}+5 x-3 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 1.00 \begin {gather*} 3 e^x (-5+x)+\frac {8}{x}+5 x-3 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 28, normalized size = 1.27 \begin {gather*} -\frac {3 \, x^{3} - 5 \, x^{2} - 3 \, {\left (x^{2} - 5 \, x\right )} e^{x} - 8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 29, normalized size = 1.32 \begin {gather*} -\frac {3 \, x^{3} - 3 \, x^{2} e^{x} - 5 \, x^{2} + 15 \, x e^{x} - 8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 1.05
method | result | size |
risch | \(-3 x^{2}+5 x +\frac {8}{x}+\left (3 x -15\right ) {\mathrm e}^{x}\) | \(23\) |
default | \(-3 x^{2}+5 x +\frac {8}{x}+3 \,{\mathrm e}^{x} x -15 \,{\mathrm e}^{x}\) | \(24\) |
norman | \(\frac {8+5 x^{2}-3 x^{3}-15 \,{\mathrm e}^{x} x +3 \,{\mathrm e}^{x} x^{2}}{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 1.14 \begin {gather*} -3 \, x^{2} + 3 \, {\left (x - 1\right )} e^{x} + 5 \, x + \frac {8}{x} - 12 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 23, normalized size = 1.05 \begin {gather*} x\,\left (3\,{\mathrm {e}}^x+5\right )-15\,{\mathrm {e}}^x+\frac {8}{x}-3\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.86 \begin {gather*} - 3 x^{2} + 5 x + \left (3 x - 15\right ) e^{x} + \frac {8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________