Optimal. Leaf size=29 \[ x+(2-x) \left (5+\frac {2}{\left (3-\frac {x}{5}\right ) \log (\log (\log (2 x)))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-300+170 x-10 x^2-130 x \log (2 x) \log (\log (2 x)) \log (\log (\log (2 x)))+\left (-900 x+120 x^2-4 x^3\right ) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))}{\left (225 x-30 x^2+x^3\right ) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-300+170 x-10 x^2-130 x \log (2 x) \log (\log (2 x)) \log (\log (\log (2 x)))+\left (-900 x+120 x^2-4 x^3\right ) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))}{x \left (225-30 x+x^2\right ) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx\\ &=\int \frac {-300+170 x-10 x^2-130 x \log (2 x) \log (\log (2 x)) \log (\log (\log (2 x)))+\left (-900 x+120 x^2-4 x^3\right ) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))}{(-15+x)^2 x \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx\\ &=\int \left (-4-\frac {10 (-2+x)}{(-15+x) x \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))}-\frac {130}{(-15+x)^2 \log (\log (\log (2 x)))}\right ) \, dx\\ &=-4 x-10 \int \frac {-2+x}{(-15+x) x \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ &=-4 x-10 \int \left (\frac {13}{15 (-15+x) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))}+\frac {2}{15 x \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))}\right ) \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ &=-4 x-\frac {4}{3} \int \frac {1}{x \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-\frac {26}{3} \int \frac {1}{(-15+x) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ &=-4 x-\frac {4}{3} \operatorname {Subst}\left (\int \frac {1}{x \log (x) \log ^2(\log (x))} \, dx,x,\log (2 x)\right )-\frac {26}{3} \int \frac {1}{(-15+x) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ &=-4 x-\frac {4}{3} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,\log (\log (2 x))\right )-\frac {26}{3} \int \frac {1}{(-15+x) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ &=-4 x-\frac {4}{3} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (\log (\log (2 x)))\right )-\frac {26}{3} \int \frac {1}{(-15+x) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ &=-4 x+\frac {4}{3 \log (\log (\log (2 x)))}-\frac {26}{3} \int \frac {1}{(-15+x) \log (2 x) \log (\log (2 x)) \log ^2(\log (\log (2 x)))} \, dx-130 \int \frac {1}{(-15+x)^2 \log (\log (\log (2 x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 0.83 \begin {gather*} -2 \left (2 x-\frac {5 (-2+x)}{(-15+x) \log (\log (\log (2 x)))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 35, normalized size = 1.21 \begin {gather*} -\frac {2 \, {\left (2 \, {\left (x^{2} - 15 \, x\right )} \log \left (\log \left (\log \left (2 \, x\right )\right )\right ) - 5 \, x + 10\right )}}{{\left (x - 15\right )} \log \left (\log \left (\log \left (2 \, x\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 28, normalized size = 0.97 \begin {gather*} -4 \, x + \frac {10 \, {\left (x - 2\right )}}{x \log \left (\log \left (\log \left (2 \, x\right )\right )\right ) - 15 \, \log \left (\log \left (\log \left (2 \, x\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.79
method | result | size |
risch | \(-4 x +\frac {10 x -20}{\left (x -15\right ) \ln \left (\ln \left (\ln \left (2 x \right )\right )\right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 37, normalized size = 1.28 \begin {gather*} -\frac {2 \, {\left (2 \, {\left (x^{2} - 15 \, x\right )} \log \left (\log \left (\log \relax (2) + \log \relax (x)\right )\right ) - 5 \, x + 10\right )}}{{\left (x - 15\right )} \log \left (\log \left (\log \relax (2) + \log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.70, size = 40, normalized size = 1.38 \begin {gather*} \frac {2\,\left (5\,x-2\,x^2\,\ln \left (\ln \left (\ln \left (2\,x\right )\right )\right )+30\,x\,\ln \left (\ln \left (\ln \left (2\,x\right )\right )\right )-10\right )}{\ln \left (\ln \left (\ln \left (2\,x\right )\right )\right )\,\left (x-15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 19, normalized size = 0.66 \begin {gather*} - 4 x + \frac {10 x - 20}{\left (x - 15\right ) \log {\left (\log {\left (\log {\left (2 x \right )} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________