Optimal. Leaf size=25 \[ e^{4 \left (-1+\frac {2}{x}+\frac {e^{2 x}}{\frac {1}{16}+\log (2)}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 3.44, antiderivative size = 49, normalized size of antiderivative = 1.96, number of steps used = 5, number of rules used = 4, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.063, Rules used = {6, 12, 6741, 6706} \begin {gather*} 2^{\frac {64 (2-x)}{x (1+16 \log (2))}} e^{\frac {4 \left (16 e^{2 x} x-x+2\right )}{x (1+16 \log (2))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {8-4 x+64 e^{2 x} x+(128-64 x) \log (2)}{x+16 x \log (2)}\right ) \left (-8+128 e^{2 x} x^2-128 \log (2)\right )}{x^2 (1+16 \log (2))} \, dx\\ &=\frac {\int \frac {\exp \left (\frac {8-4 x+64 e^{2 x} x+(128-64 x) \log (2)}{x+16 x \log (2)}\right ) \left (-8+128 e^{2 x} x^2-128 \log (2)\right )}{x^2} \, dx}{1+16 \log (2)}\\ &=\frac {\int \frac {8 \exp \left (\frac {8-4 x+64 e^{2 x} x+(128-64 x) \log (2)}{x (1+16 \log (2))}\right ) \left (-1+16 e^{2 x} x^2-16 \log (2)\right )}{x^2} \, dx}{1+16 \log (2)}\\ &=\frac {8 \int \frac {\exp \left (\frac {8-4 x+64 e^{2 x} x+(128-64 x) \log (2)}{x (1+16 \log (2))}\right ) \left (-1+16 e^{2 x} x^2-16 \log (2)\right )}{x^2} \, dx}{1+16 \log (2)}\\ &=2^{\frac {64 (2-x)}{x (1+16 \log (2))}} e^{\frac {4 \left (2-x+16 e^{2 x} x\right )}{x (1+16 \log (2))}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.09, size = 24, normalized size = 0.96 \begin {gather*} e^{-4+\frac {8}{x}+\frac {64 e^{2 x}}{1+16 \log (2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 31, normalized size = 1.24 \begin {gather*} e^{\left (\frac {4 \, {\left (16 \, x e^{\left (2 \, x\right )} - 16 \, {\left (x - 2\right )} \log \relax (2) - x + 2\right )}}{16 \, x \log \relax (2) + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 68, normalized size = 2.72 \begin {gather*} e^{\left (\frac {64 \, x e^{\left (2 \, x\right )}}{16 \, x \log \relax (2) + x} - \frac {64 \, x \log \relax (2)}{16 \, x \log \relax (2) + x} - \frac {4 \, x}{16 \, x \log \relax (2) + x} + \frac {128 \, \log \relax (2)}{16 \, x \log \relax (2) + x} + \frac {8}{16 \, x \log \relax (2) + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 32, normalized size = 1.28
method | result | size |
norman | \({\mathrm e}^{\frac {64 x \,{\mathrm e}^{2 x}+\left (-64 x +128\right ) \ln \relax (2)-4 x +8}{16 x \ln \relax (2)+x}}\) | \(32\) |
risch | \({\mathrm e}^{-\frac {4 \left (16 x \ln \relax (2)-16 x \,{\mathrm e}^{2 x}-32 \ln \relax (2)+x -2\right )}{x \left (16 \ln \relax (2)+1\right )}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.59, size = 69, normalized size = 2.76 \begin {gather*} \frac {e^{\left (\frac {64 \, e^{\left (2 \, x\right )}}{16 \, \log \relax (2) + 1} - \frac {4}{16 \, \log \relax (2) + 1} + \frac {128 \, \log \relax (2)}{x {\left (16 \, \log \relax (2) + 1\right )}} + \frac {8}{x {\left (16 \, \log \relax (2) + 1\right )}}\right )}}{2^{\frac {64}{16 \, \log \relax (2) + 1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.31, size = 58, normalized size = 2.32 \begin {gather*} {\left (\frac {1}{18446744073709551616}\right )}^{\frac {x-2}{x+16\,x\,\ln \relax (2)}}\,{\mathrm {e}}^{\frac {8}{x+16\,x\,\ln \relax (2)}}\,{\mathrm {e}}^{-\frac {4\,x}{x+16\,x\,\ln \relax (2)}}\,{\mathrm {e}}^{\frac {64\,x\,{\mathrm {e}}^{2\,x}}{x+16\,x\,\ln \relax (2)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 31, normalized size = 1.24 \begin {gather*} e^{\frac {64 x e^{2 x} - 4 x + \left (128 - 64 x\right ) \log {\relax (2 )} + 8}{x + 16 x \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________