Optimal. Leaf size=27 \[ \frac {\left (-81+e^3\right ) x}{-2-e^{\frac {e^{2+x}}{4}}+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {648-8 e^3+e^{\frac {e^{2+x}}{4}} \left (324-4 e^3+e^{2+x} \left (-81 x+e^3 x\right )\right )}{16+4 e^{\frac {e^{2+x}}{2}}+e^{\frac {e^{2+x}}{4}} (16-16 x)-32 x+16 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (81-e^3\right ) \left (8+4 e^{\frac {e^{2+x}}{4}}-e^{2+\frac {e^{2+x}}{4}+x} x\right )}{4 \left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx\\ &=\frac {1}{4} \left (81-e^3\right ) \int \frac {8+4 e^{\frac {e^{2+x}}{4}}-e^{2+\frac {e^{2+x}}{4}+x} x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx\\ &=\frac {1}{4} \left (81-e^3\right ) \int \left (\frac {4 \left (2+e^{\frac {e^{2+x}}{4}}\right )}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2}-\frac {e^{\frac {1}{4} \left (8+e^{2+x}+4 x\right )} x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2}\right ) \, dx\\ &=\left (81-e^3\right ) \int \frac {2+e^{\frac {e^{2+x}}{4}}}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx+\frac {1}{4} \left (-81+e^3\right ) \int \frac {e^{\frac {1}{4} \left (8+e^{2+x}+4 x\right )} x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx\\ &=\left (81-e^3\right ) \int \left (\frac {1}{2+e^{\frac {e^{2+x}}{4}}-2 x}+\frac {2 x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2}\right ) \, dx+\frac {1}{4} \left (-81+e^3\right ) \int \frac {e^{\frac {1}{4} \left (8+e^{2+x}+4 x\right )} x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx\\ &=\left (81-e^3\right ) \int \frac {1}{2+e^{\frac {e^{2+x}}{4}}-2 x} \, dx+\left (2 \left (81-e^3\right )\right ) \int \frac {x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx+\frac {1}{4} \left (-81+e^3\right ) \int \frac {e^{\frac {1}{4} \left (8+e^{2+x}+4 x\right )} x}{\left (2+e^{\frac {e^{2+x}}{4}}-2 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 26, normalized size = 0.96 \begin {gather*} -\frac {\left (-81+e^3\right ) x}{2+e^{\frac {e^{2+x}}{4}}-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 25, normalized size = 0.93 \begin {gather*} \frac {x e^{3} - 81 \, x}{2 \, x - e^{\left (\frac {1}{4} \, e^{\left (x + 2\right )}\right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x e^{3} - 81 \, x\right )} e^{\left (x + 2\right )} - 4 \, e^{3} + 324\right )} e^{\left (\frac {1}{4} \, e^{\left (x + 2\right )}\right )} - 8 \, e^{3} + 648}{4 \, {\left (4 \, x^{2} - 4 \, {\left (x - 1\right )} e^{\left (\frac {1}{4} \, e^{\left (x + 2\right )}\right )} - 8 \, x + e^{\left (\frac {1}{2} \, e^{\left (x + 2\right )}\right )} + 4\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 23, normalized size = 0.85
method | result | size |
risch | \(\frac {\left ({\mathrm e}^{3}-81\right ) x}{2 x -2-{\mathrm e}^{\frac {{\mathrm e}^{2+x}}{4}}}\) | \(23\) |
norman | \(\frac {\left (-\frac {81}{2}+\frac {{\mathrm e}^{3}}{2}\right ) {\mathrm e}^{\frac {{\mathrm e}^{2+x}}{4}}-81+{\mathrm e}^{3}}{2 x -2-{\mathrm e}^{\frac {{\mathrm e}^{2+x}}{4}}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{4} \, \int \frac {{\left ({\left (x e^{3} - 81 \, x\right )} e^{\left (x + 2\right )} - 4 \, e^{3} + 324\right )} e^{\left (\frac {1}{4} \, e^{\left (x + 2\right )}\right )} - 8 \, e^{3} + 648}{4 \, x^{2} - 4 \, {\left (x - 1\right )} e^{\left (\frac {1}{4} \, e^{\left (x + 2\right )}\right )} - 8 \, x + e^{\left (\frac {1}{2} \, e^{\left (x + 2\right )}\right )} + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {8\,{\mathrm {e}}^3+{\mathrm {e}}^{\frac {{\mathrm {e}}^{x+2}}{4}}\,\left (4\,{\mathrm {e}}^3+{\mathrm {e}}^{x+2}\,\left (81\,x-x\,{\mathrm {e}}^3\right )-324\right )-648}{4\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{x+2}}{2}}-32\,x-{\mathrm {e}}^{\frac {{\mathrm {e}}^{x+2}}{4}}\,\left (16\,x-16\right )+16\,x^2+16} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.74 \begin {gather*} \frac {- x e^{3} + 81 x}{- 2 x + e^{\frac {e^{x + 2}}{4}} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________