Optimal. Leaf size=32 \[ \frac {e^{e^x}}{1+\frac {1}{5} \left (-x+\left (x+x^2 \log ^4\left (x^2\right )\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 10.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^x} \left (5-10 x+e^x \left (25-5 x+5 x^2\right )-80 x^2 \log ^3\left (x^2\right )+\left (-30 x^2+10 e^x x^3\right ) \log ^4\left (x^2\right )-80 x^3 \log ^7\left (x^2\right )+\left (-20 x^3+5 e^x x^4\right ) \log ^8\left (x^2\right )\right )}{25-10 x+11 x^2-2 x^3+x^4+\left (20 x^3-4 x^4+4 x^5\right ) \log ^4\left (x^2\right )+\left (10 x^4-2 x^5+6 x^6\right ) \log ^8\left (x^2\right )+4 x^7 \log ^{12}\left (x^2\right )+x^8 \log ^{16}\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{e^x} \left (1-2 x+e^x \left (5-x+x^2\right )-16 x^2 \log ^3\left (x^2\right )+2 x^2 \left (-3+e^x x\right ) \log ^4\left (x^2\right )-16 x^3 \log ^7\left (x^2\right )+x^3 \left (-4+e^x x\right ) \log ^8\left (x^2\right )\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ &=5 \int \frac {e^{e^x} \left (1-2 x+e^x \left (5-x+x^2\right )-16 x^2 \log ^3\left (x^2\right )+2 x^2 \left (-3+e^x x\right ) \log ^4\left (x^2\right )-16 x^3 \log ^7\left (x^2\right )+x^3 \left (-4+e^x x\right ) \log ^8\left (x^2\right )\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ &=5 \int \left (\frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {2 e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {16 e^{e^x} x^2 \log ^3\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {6 e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {16 e^{e^x} x^3 \log ^7\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {4 e^{e^x} x^3 \log ^8\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}+\frac {e^{e^x+x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )}\right ) \, dx\\ &=5 \int \frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+5 \int \frac {e^{e^x+x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )} \, dx-10 \int \frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \frac {e^{e^x} x^3 \log ^8\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-30 \int \frac {e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^2 \log ^3\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^3 \log ^7\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ &=5 \int \frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+5 \int \frac {e^{e^x+x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )} \, dx-10 \int \frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \left (\frac {e^{e^x} \left (-5+x-x^2-2 x^3 \log ^4\left (x^2\right )\right )}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}+\frac {e^{e^x}}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )}\right ) \, dx-30 \int \frac {e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^2 \log ^3\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^3 \log ^7\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ &=5 \int \frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+5 \int \frac {e^{e^x+x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )} \, dx-10 \int \frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \frac {e^{e^x} \left (-5+x-x^2-2 x^3 \log ^4\left (x^2\right )\right )}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \frac {e^{e^x}}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )} \, dx-30 \int \frac {e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^2 \log ^3\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^3 \log ^7\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ &=5 \int \frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+5 \int \frac {e^{e^x+x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )} \, dx-10 \int \frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \frac {e^{e^x}}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )} \, dx-20 \int \left (\frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {5 e^{e^x}}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}-\frac {2 e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2}\right ) \, dx-30 \int \frac {e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^2 \log ^3\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^3 \log ^7\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ &=5 \int \frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+5 \int \frac {e^{e^x+x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )} \, dx-10 \int \frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \frac {e^{e^x}}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+20 \int \frac {e^{e^x} x}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-20 \int \frac {e^{e^x}}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )} \, dx-30 \int \frac {e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+40 \int \frac {e^{e^x} x^2 \log ^4\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^2 \log ^3\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx-80 \int \frac {e^{e^x} x^3 \log ^7\left (x^2\right )}{\left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx+100 \int \frac {e^{e^x}}{x \left (5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 38, normalized size = 1.19 \begin {gather*} \frac {5 e^{e^x}}{5-x+x^2+2 x^3 \log ^4\left (x^2\right )+x^4 \log ^8\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 36, normalized size = 1.12 \begin {gather*} \frac {5 \, e^{\left (e^{x}\right )}}{x^{4} \log \left (x^{2}\right )^{8} + 2 \, x^{3} \log \left (x^{2}\right )^{4} + x^{2} - x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (5 \,{\mathrm e}^{x} x^{4}-20 x^{3}\right ) \ln \left (x^{2}\right )^{8}-80 x^{3} \ln \left (x^{2}\right )^{7}+\left (10 \,{\mathrm e}^{x} x^{3}-30 x^{2}\right ) \ln \left (x^{2}\right )^{4}-80 x^{2} \ln \left (x^{2}\right )^{3}+\left (5 x^{2}-5 x +25\right ) {\mathrm e}^{x}-10 x +5\right ) {\mathrm e}^{{\mathrm e}^{x}}}{x^{8} \ln \left (x^{2}\right )^{16}+4 x^{7} \ln \left (x^{2}\right )^{12}+\left (6 x^{6}-2 x^{5}+10 x^{4}\right ) \ln \left (x^{2}\right )^{8}+\left (4 x^{5}-4 x^{4}+20 x^{3}\right ) \ln \left (x^{2}\right )^{4}+x^{4}-2 x^{3}+11 x^{2}-10 x +25}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 33, normalized size = 1.03 \begin {gather*} \frac {5 \, e^{\left (e^{x}\right )}}{256 \, x^{4} \log \relax (x)^{8} + 32 \, x^{3} \log \relax (x)^{4} + x^{2} - x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 36, normalized size = 1.12 \begin {gather*} \frac {5\,{\mathrm {e}}^{{\mathrm {e}}^x}}{x^4\,{\ln \left (x^2\right )}^8+2\,x^3\,{\ln \left (x^2\right )}^4+x^2-x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 34, normalized size = 1.06 \begin {gather*} \frac {5 e^{e^{x}}}{x^{4} \log {\left (x^{2} \right )}^{8} + 2 x^{3} \log {\left (x^{2} \right )}^{4} + x^{2} - x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________