Optimal. Leaf size=24 \[ \frac {5 e^x}{(1-2 x) \left (4+4 \log \left (\frac {5}{x}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 e^x \left (1+x-2 x^2\right )+5 e^x \left (3 x-2 x^2\right ) \log \left (\frac {5}{x}\right )}{4 x-16 x^2+16 x^3+\left (8 x-32 x^2+32 x^3\right ) \log \left (\frac {5}{x}\right )+\left (4 x-16 x^2+16 x^3\right ) \log ^2\left (\frac {5}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^x \left (1+x-2 x^2-x (-3+2 x) \log \left (\frac {5}{x}\right )\right )}{4 (1-2 x)^2 x \left (1+\log \left (\frac {5}{x}\right )\right )^2} \, dx\\ &=\frac {5}{4} \int \frac {e^x \left (1+x-2 x^2-x (-3+2 x) \log \left (\frac {5}{x}\right )\right )}{(1-2 x)^2 x \left (1+\log \left (\frac {5}{x}\right )\right )^2} \, dx\\ &=\frac {5}{4} \int \left (-\frac {e^x}{x (-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )^2}+\frac {e^x (3-2 x)}{(-1+2 x)^2 \left (1+\log \left (\frac {5}{x}\right )\right )}\right ) \, dx\\ &=-\left (\frac {5}{4} \int \frac {e^x}{x (-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )^2} \, dx\right )+\frac {5}{4} \int \frac {e^x (3-2 x)}{(-1+2 x)^2 \left (1+\log \left (\frac {5}{x}\right )\right )} \, dx\\ &=-\left (\frac {5}{4} \int \left (-\frac {e^x}{x \left (1+\log \left (\frac {5}{x}\right )\right )^2}+\frac {2 e^x}{(-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )^2}\right ) \, dx\right )+\frac {5}{4} \int \left (\frac {2 e^x}{(-1+2 x)^2 \left (1+\log \left (\frac {5}{x}\right )\right )}-\frac {e^x}{(-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )}\right ) \, dx\\ &=\frac {5}{4} \int \frac {e^x}{x \left (1+\log \left (\frac {5}{x}\right )\right )^2} \, dx-\frac {5}{4} \int \frac {e^x}{(-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )} \, dx-\frac {5}{2} \int \frac {e^x}{(-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )^2} \, dx+\frac {5}{2} \int \frac {e^x}{(-1+2 x)^2 \left (1+\log \left (\frac {5}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 24, normalized size = 1.00 \begin {gather*} -\frac {5 e^x}{4 (-1+2 x) \left (1+\log \left (\frac {5}{x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 26, normalized size = 1.08 \begin {gather*} -\frac {e^{\left (x + \log \relax (5)\right )}}{4 \, {\left ({\left (2 \, x - 1\right )} \log \left (\frac {5}{x}\right ) + 2 \, x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 28, normalized size = 1.17 \begin {gather*} -\frac {5 \, e^{x}}{4 \, {\left (2 \, x \log \left (\frac {5}{x}\right ) + 2 \, x - \log \left (\frac {5}{x}\right ) - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.11, size = 28, normalized size = 1.17
method | result | size |
risch | \(-\frac {5 i {\mathrm e}^{x}}{2 \left (2 x -1\right ) \left (2 i \ln \relax (5)-2 i \ln \relax (x )+2 i\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 28, normalized size = 1.17 \begin {gather*} -\frac {5 \, e^{x}}{4 \, {\left (2 \, x {\left (\log \relax (5) + 1\right )} - {\left (2 \, x - 1\right )} \log \relax (x) - \log \relax (5) - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 21, normalized size = 0.88 \begin {gather*} -\frac {5\,{\mathrm {e}}^x}{4\,\left (\ln \left (\frac {5}{x}\right )+1\right )\,\left (2\,x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 26, normalized size = 1.08 \begin {gather*} - \frac {5 e^{x}}{8 x \log {\left (\frac {5}{x} \right )} + 8 x - 4 \log {\left (\frac {5}{x} \right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________