Optimal. Leaf size=30 \[ e^{4+\left (3+5 x+x^2\right ) \log (3)-\frac {1}{(2-x) (3+\log (x))}} \]
________________________________________________________________________________________
Rubi [F] time = 20.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{-6+3 x+(-2+x) \log (x)}\right ) \left (2-4 x+\left (180 x-108 x^2-27 x^3+18 x^4\right ) \log (3)+\left (-x+\left (120 x-72 x^2-18 x^3+12 x^4\right ) \log (3)\right ) \log (x)+\left (20 x-12 x^2-3 x^3+2 x^4\right ) \log (3) \log ^2(x)\right )}{36 x-36 x^2+9 x^3+\left (24 x-24 x^2+6 x^3\right ) \log (x)+\left (4 x-4 x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right ) \left (2-4 x+\left (180 x-108 x^2-27 x^3+18 x^4\right ) \log (3)+\left (-x+\left (120 x-72 x^2-18 x^3+12 x^4\right ) \log (3)\right ) \log (x)+\left (20 x-12 x^2-3 x^3+2 x^4\right ) \log (3) \log ^2(x)\right )}{(2-x)^2 x (3+\log (x))^2} \, dx\\ &=\int \left (\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right ) (5+2 x) \log (3)-\frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x) x (3+\log (x))^2}-\frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x)^2 (3+\log (x))}\right ) \, dx\\ &=\log (3) \int \exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right ) (5+2 x) \, dx-\int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x) x (3+\log (x))^2} \, dx-\int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x)^2 (3+\log (x))} \, dx\\ &=\log (3) \int \left (5 \exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )+2 \exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right ) x\right ) \, dx-\int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x)^2 (3+\log (x))} \, dx-\int \left (\frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{2 (-2+x) (3+\log (x))^2}-\frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{2 x (3+\log (x))^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x) (3+\log (x))^2} \, dx\right )+\frac {1}{2} \int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{x (3+\log (x))^2} \, dx+(2 \log (3)) \int \exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right ) x \, dx+(5 \log (3)) \int \exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right ) \, dx-\int \frac {\exp \left (\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{(-2+x) (3+\log (x))}\right )}{(-2+x)^2 (3+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 5.37, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-23+12 x+\left (-18-21 x+9 x^2+3 x^3\right ) \log (3)+\left (-8+4 x+\left (-6-7 x+3 x^2+x^3\right ) \log (3)\right ) \log (x)}{-6+3 x+(-2+x) \log (x)}} \left (2-4 x+\left (180 x-108 x^2-27 x^3+18 x^4\right ) \log (3)+\left (-x+\left (120 x-72 x^2-18 x^3+12 x^4\right ) \log (3)\right ) \log (x)+\left (20 x-12 x^2-3 x^3+2 x^4\right ) \log (3) \log ^2(x)\right )}{36 x-36 x^2+9 x^3+\left (24 x-24 x^2+6 x^3\right ) \log (x)+\left (4 x-4 x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 61, normalized size = 2.03 \begin {gather*} e^{\left (\frac {3 \, {\left (x^{3} + 3 \, x^{2} - 7 \, x - 6\right )} \log \relax (3) + {\left ({\left (x^{3} + 3 \, x^{2} - 7 \, x - 6\right )} \log \relax (3) + 4 \, x - 8\right )} \log \relax (x) + 12 \, x - 23}{{\left (x - 2\right )} \log \relax (x) + 3 \, x - 6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.46, size = 249, normalized size = 8.30 \begin {gather*} e^{\left (\frac {x^{3} \log \relax (3) \log \relax (x)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} + \frac {3 \, x^{3} \log \relax (3)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} + \frac {3 \, x^{2} \log \relax (3) \log \relax (x)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} + \frac {9 \, x^{2} \log \relax (3)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} - \frac {7 \, x \log \relax (3) \log \relax (x)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} - \frac {21 \, x \log \relax (3)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} + \frac {4 \, x \log \relax (x)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} - \frac {6 \, \log \relax (3) \log \relax (x)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} + \frac {12 \, x}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} - \frac {18 \, \log \relax (3)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} - \frac {8 \, \log \relax (x)}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6} - \frac {23}{x \log \relax (x) + 3 \, x - 2 \, \log \relax (x) - 6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 81, normalized size = 2.70
method | result | size |
risch | \({\mathrm e}^{\frac {\ln \relax (x ) \ln \relax (3) x^{3}+3 x^{2} \ln \relax (3) \ln \relax (x )+3 x^{3} \ln \relax (3)-7 x \ln \relax (3) \ln \relax (x )+9 x^{2} \ln \relax (3)-6 \ln \relax (3) \ln \relax (x )+4 x \ln \relax (x )-21 x \ln \relax (3)-8 \ln \relax (x )-18 \ln \relax (3)+12 x -23}{\left (x -2\right ) \left (3+\ln \relax (x )\right )}}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.02, size = 106, normalized size = 3.53 \begin {gather*} e^{\left (\frac {x^{2} \log \relax (3) \log \relax (x)}{\log \relax (x) + 3} + \frac {3 \, x^{2} \log \relax (3)}{\log \relax (x) + 3} + \frac {5 \, x \log \relax (3) \log \relax (x)}{\log \relax (x) + 3} + \frac {15 \, x \log \relax (3)}{\log \relax (x) + 3} + \frac {3 \, \log \relax (3) \log \relax (x)}{\log \relax (x) + 3} + \frac {9 \, \log \relax (3)}{\log \relax (x) + 3} + \frac {4 \, \log \relax (x)}{\log \relax (x) + 3} + \frac {1}{{\left (x - 2\right )} \log \relax (x) + 3 \, x - 6} + \frac {12}{\log \relax (x) + 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 81, normalized size = 2.70 \begin {gather*} {27}^{\frac {x^2+5\,x+3}{\ln \relax (x)+3}}\,x^{\frac {\ln \relax (3)\,x^2+5\,\ln \relax (3)\,x+3\,\ln \relax (3)+4}{\ln \relax (x)+3}}\,{\mathrm {e}}^{\frac {12\,x}{3\,x-2\,\ln \relax (x)+x\,\ln \relax (x)-6}-\frac {23}{3\,x-2\,\ln \relax (x)+x\,\ln \relax (x)-6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.48, size = 61, normalized size = 2.03 \begin {gather*} e^{\frac {12 x + \left (4 x + \left (x^{3} + 3 x^{2} - 7 x - 6\right ) \log {\relax (3 )} - 8\right ) \log {\relax (x )} + \left (3 x^{3} + 9 x^{2} - 21 x - 18\right ) \log {\relax (3 )} - 23}{3 x + \left (x - 2\right ) \log {\relax (x )} - 6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________