3.42.83 \(\int \frac {-20 x+2 x^2+(-10 x+x^2) \log (2)+(-81+18 x) \log (3)}{x^4} \, dx\)

Optimal. Leaf size=30 \[ \frac {\frac {(5-x) (2+\log (2))}{x}+\frac {9 (3-x) \log (3)}{x^2}}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 29, normalized size of antiderivative = 0.97, number of steps used = 2, number of rules used = 1, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {14} \begin {gather*} \frac {27 \log (3)}{x^3}+\frac {10-\log \left (\frac {19683}{32}\right )}{x^2}-\frac {2+\log (2)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-20*x + 2*x^2 + (-10*x + x^2)*Log[2] + (-81 + 18*x)*Log[3])/x^4,x]

[Out]

-((2 + Log[2])/x) + (27*Log[3])/x^3 + (10 - Log[19683/32])/x^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2+\log (2)}{x^2}-\frac {81 \log (3)}{x^4}+\frac {2 \left (-10+\log \left (\frac {19683}{32}\right )\right )}{x^3}\right ) \, dx\\ &=-\frac {2+\log (2)}{x}+\frac {27 \log (3)}{x^3}+\frac {10-\log \left (\frac {19683}{32}\right )}{x^2}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 30, normalized size = 1.00 \begin {gather*} \frac {-2-\log (2)}{x}+\frac {27 \log (3)}{x^3}+\frac {10-9 \log (3)+\log (32)}{x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-20*x + 2*x^2 + (-10*x + x^2)*Log[2] + (-81 + 18*x)*Log[3])/x^4,x]

[Out]

(-2 - Log[2])/x + (27*Log[3])/x^3 + (10 - 9*Log[3] + Log[32])/x^2

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 31, normalized size = 1.03 \begin {gather*} -\frac {2 \, x^{2} + 9 \, {\left (x - 3\right )} \log \relax (3) + {\left (x^{2} - 5 \, x\right )} \log \relax (2) - 10 \, x}{x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*log(3)+(x^2-10*x)*log(2)+2*x^2-20*x)/x^4,x, algorithm="fricas")

[Out]

-(2*x^2 + 9*(x - 3)*log(3) + (x^2 - 5*x)*log(2) - 10*x)/x^3

________________________________________________________________________________________

giac [A]  time = 0.14, size = 34, normalized size = 1.13 \begin {gather*} -\frac {x^{2} \log \relax (2) + 2 \, x^{2} + 9 \, x \log \relax (3) - 5 \, x \log \relax (2) - 10 \, x - 27 \, \log \relax (3)}{x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*log(3)+(x^2-10*x)*log(2)+2*x^2-20*x)/x^4,x, algorithm="giac")

[Out]

-(x^2*log(2) + 2*x^2 + 9*x*log(3) - 5*x*log(2) - 10*x - 27*log(3))/x^3

________________________________________________________________________________________

maple [A]  time = 0.04, size = 32, normalized size = 1.07




method result size



norman \(\frac {\left (-2-\ln \relax (2)\right ) x^{2}+\left (5 \ln \relax (2)-9 \ln \relax (3)+10\right ) x +27 \ln \relax (3)}{x^{3}}\) \(32\)
risch \(\frac {\left (-2-\ln \relax (2)\right ) x^{2}+\left (5 \ln \relax (2)-9 \ln \relax (3)+10\right ) x +27 \ln \relax (3)}{x^{3}}\) \(32\)
default \(\frac {27 \ln \relax (3)}{x^{3}}-\frac {-10 \ln \relax (2)+18 \ln \relax (3)-20}{2 x^{2}}-\frac {\ln \relax (2)+2}{x}\) \(33\)
gosper \(-\frac {x^{2} \ln \relax (2)-5 x \ln \relax (2)+9 x \ln \relax (3)+2 x^{2}-27 \ln \relax (3)-10 x}{x^{3}}\) \(35\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((18*x-81)*ln(3)+(x^2-10*x)*ln(2)+2*x^2-20*x)/x^4,x,method=_RETURNVERBOSE)

[Out]

((-2-ln(2))*x^2+(5*ln(2)-9*ln(3)+10)*x+27*ln(3))/x^3

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 30, normalized size = 1.00 \begin {gather*} -\frac {x^{2} {\left (\log \relax (2) + 2\right )} + x {\left (9 \, \log \relax (3) - 5 \, \log \relax (2) - 10\right )} - 27 \, \log \relax (3)}{x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*log(3)+(x^2-10*x)*log(2)+2*x^2-20*x)/x^4,x, algorithm="maxima")

[Out]

-(x^2*(log(2) + 2) + x*(9*log(3) - 5*log(2) - 10) - 27*log(3))/x^3

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 24, normalized size = 0.80 \begin {gather*} -\frac {\left (\ln \relax (2)+2\right )\,x^2+\left (\ln \left (\frac {19683}{32}\right )-10\right )\,x-\ln \left (7625597484987\right )}{x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(20*x - log(3)*(18*x - 81) + log(2)*(10*x - x^2) - 2*x^2)/x^4,x)

[Out]

-(x^2*(log(2) + 2) - log(7625597484987) + x*(log(19683/32) - 10))/x^3

________________________________________________________________________________________

sympy [A]  time = 0.49, size = 31, normalized size = 1.03 \begin {gather*} \frac {x^{2} \left (-2 - \log {\relax (2 )}\right ) + x \left (- 9 \log {\relax (3 )} + 5 \log {\relax (2 )} + 10\right ) + 27 \log {\relax (3 )}}{x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*ln(3)+(x**2-10*x)*ln(2)+2*x**2-20*x)/x**4,x)

[Out]

(x**2*(-2 - log(2)) + x*(-9*log(3) + 5*log(2) + 10) + 27*log(3))/x**3

________________________________________________________________________________________