3.42.82 e256+x(342x+171x281x4+81x5)361+342x3+81x6dx

Optimal. Leaf size=17 e256+x199x2+x

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 27, normalized size of antiderivative = 1.59, number of steps used = 2, number of rules used = 2, integrand size = 39, number of rulesintegrand size = 0.051, Rules used = {28, 2288} 9ex+256(9x5+19x2)(9x3+19)2

Antiderivative was successfully verified.

[In]

Int[(E^(256 + x)*(342*x + 171*x^2 - 81*x^4 + 81*x^5))/(361 + 342*x^3 + 81*x^6),x]

[Out]

(9*E^(256 + x)*(19*x^2 + 9*x^5))/(19 + 9*x^3)^2

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=81e256+x(342x+171x281x4+81x5)(171+81x3)2dx=9e256+x(19x2+9x5)(19+9x3)2

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 19, normalized size = 1.12 9e256+xx219+9x3

Antiderivative was successfully verified.

[In]

Integrate[(E^(256 + x)*(342*x + 171*x^2 - 81*x^4 + 81*x^5))/(361 + 342*x^3 + 81*x^6),x]

[Out]

(9*E^(256 + x)*x^2)/(19 + 9*x^3)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 18, normalized size = 1.06 9x2e(x+256)9x3+19

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((81*x^5-81*x^4+171*x^2+342*x)*exp(256+x)/(81*x^6+342*x^3+361),x, algorithm="fricas")

[Out]

9*x^2*e^(x + 256)/(9*x^3 + 19)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 18, normalized size = 1.06 9x2e(x+256)9x3+19

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((81*x^5-81*x^4+171*x^2+342*x)*exp(256+x)/(81*x^6+342*x^3+361),x, algorithm="giac")

[Out]

9*x^2*e^(x + 256)/(9*x^3 + 19)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 19, normalized size = 1.12




method result size



gosper 9x2e256+x9x3+19 19
norman 9x2e256+x9x3+19 19
risch 9x2e256+x9x3+19 19
derivativedivides 29802774360576e256+xx19(9(256+x)36912(256+x)2+301989907+1769472x)9934258120192(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(_R1258)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)171+581632495218e256+x(256+x)x19(9(256+x)36912(256+x)2+301989907+1769472x)+64625832802(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(_R12257_R1256)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)571513488365e256+x(4608(256+x)23019899071769472x)57(9(256+x)36912(256+x)2+301989907+1769472x)1513488365(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(4608_R121774080_R1+150994925)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)1539+1969152e256+x(1769472(256+x)2115964131584754974739x)19(9(256+x)36912(256+x)2+301989907+1769472x)+656384(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(1769472_R12756744211_R1+77460396525)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)1713843e256+x(603979757(256+x)239582424825856270582949376x)19(9(256+x)36912(256+x)2+301989907+1769472x)427(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(603979757_R12271186929190_R1+29764119616000)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)57+e256+x(1739461536000(256+x)2113997379912334999801543976648704x)513(256+x)3393984(256+x)2+17213424699+100859904x+(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(1739461535487_R12803283438578688_R1+91465059401662825)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)1539 520
default 29802774360576e256+xx19(9(256+x)36912(256+x)2+301989907+1769472x)9934258120192(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(_R1258)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)171+581632495218e256+x(256+x)x19(9(256+x)36912(256+x)2+301989907+1769472x)+64625832802(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(_R12257_R1256)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)571513488365e256+x(4608(256+x)23019899071769472x)57(9(256+x)36912(256+x)2+301989907+1769472x)1513488365(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(4608_R121774080_R1+150994925)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)1539+1969152e256+x(1769472(256+x)2115964131584754974739x)19(9(256+x)36912(256+x)2+301989907+1769472x)+656384(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(1769472_R12756744211_R1+77460396525)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)1713843e256+x(603979757(256+x)239582424825856270582949376x)19(9(256+x)36912(256+x)2+301989907+1769472x)427(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(603979757_R12271186929190_R1+29764119616000)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)57+e256+x(1739461536000(256+x)2113997379912334999801543976648704x)513(256+x)3393984(256+x)2+17213424699+100859904x+(_R1=RootOf(9_Z36912_Z2+1769472_Z150994925)(1739461535487_R12803283438578688_R1+91465059401662825)e_R1\expIntegralEi(1,256x+_R1)_R12512_R1+65536)1539 520



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((81*x^5-81*x^4+171*x^2+342*x)*exp(256+x)/(81*x^6+342*x^3+361),x,method=_RETURNVERBOSE)

[Out]

9*x^2*exp(256+x)/(9*x^3+19)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 18, normalized size = 1.06 9x2e(x+256)9x3+19

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((81*x^5-81*x^4+171*x^2+342*x)*exp(256+x)/(81*x^6+342*x^3+361),x, algorithm="maxima")

[Out]

9*x^2*e^(x + 256)/(9*x^3 + 19)

________________________________________________________________________________________

mupad [B]  time = 3.03, size = 18, normalized size = 1.06 9x2e256ex9x3+19

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x + 256)*(342*x + 171*x^2 - 81*x^4 + 81*x^5))/(342*x^3 + 81*x^6 + 361),x)

[Out]

(9*x^2*exp(256)*exp(x))/(9*x^3 + 19)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 15, normalized size = 0.88 9x2ex+2569x3+19

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((81*x**5-81*x**4+171*x**2+342*x)*exp(256+x)/(81*x**6+342*x**3+361),x)

[Out]

9*x**2*exp(x + 256)/(9*x**3 + 19)

________________________________________________________________________________________