3.41.65 \(\int \frac {1}{x+\log (\frac {\log (5)}{4})} \, dx\)

Optimal. Leaf size=17 \[ \log (11)+\log \left (\frac {2}{5} \left (x+\log \left (\frac {\log (5)}{4}\right )\right )\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 10, normalized size of antiderivative = 0.59, number of steps used = 1, number of rules used = 1, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {31} \begin {gather*} \log \left (x+\log \left (\frac {\log (5)}{4}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x + Log[Log[5]/4])^(-1),x]

[Out]

Log[x + Log[Log[5]/4]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\log \left (x+\log \left (\frac {\log (5)}{4}\right )\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 10, normalized size = 0.59 \begin {gather*} \log \left (x+\log \left (\frac {\log (5)}{4}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x + Log[Log[5]/4])^(-1),x]

[Out]

Log[x + Log[Log[5]/4]]

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 8, normalized size = 0.47 \begin {gather*} \log \left (x + \log \left (\frac {1}{4} \, \log \relax (5)\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(log(1/4*log(5))+x),x, algorithm="fricas")

[Out]

log(x + log(1/4*log(5)))

________________________________________________________________________________________

giac [A]  time = 0.15, size = 9, normalized size = 0.53 \begin {gather*} \log \left ({\left | x + \log \left (\frac {1}{4} \, \log \relax (5)\right ) \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(log(1/4*log(5))+x),x, algorithm="giac")

[Out]

log(abs(x + log(1/4*log(5))))

________________________________________________________________________________________

maple [A]  time = 0.13, size = 9, normalized size = 0.53




method result size



default \(\ln \left (\ln \left (\frac {\ln \relax (5)}{4}\right )+x \right )\) \(9\)
norman \(\ln \left (\ln \left (\frac {\ln \relax (5)}{4}\right )+x \right )\) \(9\)
risch \(\ln \left (-2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+x \right )\) \(11\)
meijerg \(\ln \left (1+\frac {x}{\ln \left (\frac {\ln \relax (5)}{4}\right )}\right )\) \(13\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(ln(1/4*ln(5))+x),x,method=_RETURNVERBOSE)

[Out]

ln(ln(1/4*ln(5))+x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 8, normalized size = 0.47 \begin {gather*} \log \left (x + \log \left (\frac {1}{4} \, \log \relax (5)\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(log(1/4*log(5))+x),x, algorithm="maxima")

[Out]

log(x + log(1/4*log(5)))

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 8, normalized size = 0.47 \begin {gather*} \ln \left (x+\ln \left (\frac {\ln \relax (5)}{4}\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x + log(log(5)/4)),x)

[Out]

log(x + log(log(5)/4))

________________________________________________________________________________________

sympy [A]  time = 0.07, size = 12, normalized size = 0.71 \begin {gather*} \log {\left (x - 2 \log {\relax (2 )} + \log {\left (\log {\relax (5 )} \right )} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(ln(1/4*ln(5))+x),x)

[Out]

log(x - 2*log(2) + log(log(5)))

________________________________________________________________________________________