Optimal. Leaf size=32 \[ -x+\log \left (\frac {\left (4-e^x-x-\log (x)\right ) \left (-1+x+\log \left (x^2\right )\right )^2}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-21-3 x+7 x^2-x^3+e^x (5+x)+\left (5+2 x-x^2\right ) \log (x)+\left (5-e^x+4 x-x^2+(-1-x) \log (x)\right ) \log \left (x^2\right )}{4 x-5 x^2+x^3+e^x \left (-x+x^2\right )+\left (-x+x^2\right ) \log (x)+\left (-4 x+e^x x+x^2+x \log (x)\right ) \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-21-3 x+7 x^2-x^3+e^x (5+x)+\left (5+2 x-x^2\right ) \log (x)+\left (5-e^x+4 x-x^2+(-1-x) \log (x)\right ) \log \left (x^2\right )}{x \left (4-e^x-x-\log (x)\right ) \left (1-x-\log \left (x^2\right )\right )} \, dx\\ &=\int \left (-\frac {-1-5 x+x^2+x \log (x)}{x \left (-4+e^x+x+\log (x)\right )}+\frac {5+x-\log \left (x^2\right )}{x \left (-1+x+\log \left (x^2\right )\right )}\right ) \, dx\\ &=-\int \frac {-1-5 x+x^2+x \log (x)}{x \left (-4+e^x+x+\log (x)\right )} \, dx+\int \frac {5+x-\log \left (x^2\right )}{x \left (-1+x+\log \left (x^2\right )\right )} \, dx\\ &=-\int \left (-\frac {5}{-4+e^x+x+\log (x)}-\frac {1}{x \left (-4+e^x+x+\log (x)\right )}+\frac {x}{-4+e^x+x+\log (x)}+\frac {\log (x)}{-4+e^x+x+\log (x)}\right ) \, dx+\int \left (-\frac {1}{x}+\frac {2 (2+x)}{x \left (-1+x+\log \left (x^2\right )\right )}\right ) \, dx\\ &=-\log (x)+2 \int \frac {2+x}{x \left (-1+x+\log \left (x^2\right )\right )} \, dx+5 \int \frac {1}{-4+e^x+x+\log (x)} \, dx+\int \frac {1}{x \left (-4+e^x+x+\log (x)\right )} \, dx-\int \frac {x}{-4+e^x+x+\log (x)} \, dx-\int \frac {\log (x)}{-4+e^x+x+\log (x)} \, dx\\ &=-\log (x)+2 \log \left (1-x-\log \left (x^2\right )\right )+5 \int \frac {1}{-4+e^x+x+\log (x)} \, dx+\int \frac {1}{x \left (-4+e^x+x+\log (x)\right )} \, dx-\int \frac {x}{-4+e^x+x+\log (x)} \, dx-\int \frac {\log (x)}{-4+e^x+x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 37, normalized size = 1.16 \begin {gather*} -x-\log (x)+\log \left (4-e^x-x-\log (x)\right )+2 \log \left (1-x-\log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 26, normalized size = 0.81 \begin {gather*} -x + \log \left (x + e^{x} + \log \relax (x) - 4\right ) + 2 \, \log \left (x + 2 \, \log \relax (x) - 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 28, normalized size = 0.88 \begin {gather*} -x + \log \left (x + e^{x} + \log \relax (x) - 4\right ) - \log \relax (x) + 2 \, \log \left (-x - 2 \, \log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 27, normalized size = 0.84
method | result | size |
default | \(-\ln \relax (x )-x +2 \ln \left (-1+x +\ln \left (x^{2}\right )\right )+\ln \left (x +{\mathrm e}^{x}+\ln \relax (x )-4\right )\) | \(27\) |
risch | \(-x -\ln \relax (x )+\ln \left (x +{\mathrm e}^{x}+\ln \relax (x )-4\right )+2 \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i x -2 i\right )}{4}\right )\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 0.81 \begin {gather*} -x + \log \left (x + e^{x} + \log \relax (x) - 4\right ) - \log \relax (x) + 2 \, \log \left (\frac {1}{2} \, x + \log \relax (x) - \frac {1}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.31, size = 60, normalized size = 1.88 \begin {gather*} \ln \left (\frac {\left (x+2\right )\,\left (x+{\mathrm {e}}^x+\ln \relax (x)-4\right )}{x}\right )-x-2\,\ln \left (\frac {x+x\,{\mathrm {e}}^x+1}{x}\right )-\ln \left (x+2\right )+2\,\ln \left (\frac {\left (x+\ln \left (x^2\right )-1\right )\,\left (x+x\,{\mathrm {e}}^x+1\right )}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 29, normalized size = 0.91 \begin {gather*} - x - \log {\relax (x )} + 2 \log {\left (\frac {x}{2} + \log {\relax (x )} - \frac {1}{2} \right )} + \log {\left (x + e^{x} + \log {\relax (x )} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________