Optimal. Leaf size=17 \[ 4+e^{\frac {x}{e^{12} (2+2 x)^2}}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {12, 21, 6688, 6706} \begin {gather*} x+e^{\frac {x}{4 e^{12} (x+1)^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 21
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{\frac {x}{e^{12} (2+2 x)^2}} (1-x)+e^{12} (1+x) (2+2 x)^2}{(1+x) (2+2 x)^2} \, dx}{e^{12}}\\ &=\frac {\int \frac {e^{\frac {x}{e^{12} (2+2 x)^2}} (1-x)+e^{12} (1+x) (2+2 x)^2}{(1+x)^3} \, dx}{4 e^{12}}\\ &=\frac {\int \left (4 e^{12}-\frac {e^{\frac {x}{e^{12} (2+2 x)^2}} (-1+x)}{(1+x)^3}\right ) \, dx}{4 e^{12}}\\ &=x-\frac {\int \frac {e^{\frac {x}{e^{12} (2+2 x)^2}} (-1+x)}{(1+x)^3} \, dx}{4 e^{12}}\\ &=e^{\frac {x}{4 e^{12} (1+x)^2}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 17, normalized size = 1.00 \begin {gather*} e^{\frac {x}{4 e^{12} (1+x)^2}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 18, normalized size = 1.06 \begin {gather*} x + e^{\left (\frac {x e^{\left (-12\right )}}{4 \, {\left (x^{2} + 2 \, x + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 88, normalized size = 5.18 \begin {gather*} x + e^{\left (-\frac {12 \, x^{2} e^{12}}{x^{2} e^{12} + 2 \, x e^{12} + e^{12}} - \frac {24 \, x e^{12}}{x^{2} e^{12} + 2 \, x e^{12} + e^{12}} + \frac {x}{4 \, {\left (x^{2} e^{12} + 2 \, x e^{12} + e^{12}\right )}} - \frac {12 \, e^{12}}{x^{2} e^{12} + 2 \, x e^{12} + e^{12}} + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 14, normalized size = 0.82
method | result | size |
risch | \(x +{\mathrm e}^{\frac {x \,{\mathrm e}^{-12}}{4 \left (x +1\right )^{2}}}\) | \(14\) |
default | \({\mathrm e}^{-2} \left ({\mathrm e}^{12} {\mathrm e}^{-10-\frac {{\mathrm e}^{-12}}{4 \left (x +1\right )^{2}}+\frac {{\mathrm e}^{-12}}{4 x +4}}+{\mathrm e}^{2} x \right )\) | \(37\) |
norman | \(\frac {\left (x^{3} {\mathrm e}^{5}-3 x \,{\mathrm e}^{5}+{\mathrm e}^{5} {\mathrm e}^{\frac {x \,{\mathrm e}^{-2} {\mathrm e}^{-10}}{\left (2 x +2\right )^{2}}}+x^{2} {\mathrm e}^{5} {\mathrm e}^{\frac {x \,{\mathrm e}^{-2} {\mathrm e}^{-10}}{\left (2 x +2\right )^{2}}}+2 x \,{\mathrm e}^{5} {\mathrm e}^{\frac {x \,{\mathrm e}^{-2} {\mathrm e}^{-10}}{\left (2 x +2\right )^{2}}}-2 \,{\mathrm e}^{5}\right ) {\mathrm e}^{-5}}{\left (x +1\right )^{2}}\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 129, normalized size = 7.59 \begin {gather*} \frac {1}{2} \, {\left ({\left (2 \, x - \frac {6 \, x + 5}{x^{2} + 2 \, x + 1} - 6 \, \log \left (x + 1\right )\right )} e^{12} + 3 \, {\left (\frac {4 \, x + 3}{x^{2} + 2 \, x + 1} + 2 \, \log \left (x + 1\right )\right )} e^{12} - \frac {3 \, {\left (2 \, x + 1\right )} e^{12}}{x^{2} + 2 \, x + 1} - \frac {e^{12}}{x^{2} + 2 \, x + 1} + 2 \, e^{\left (-\frac {1}{4 \, {\left (x^{2} e^{12} + 2 \, x e^{12} + e^{12}\right )}} + \frac {1}{4 \, {\left (x e^{12} + e^{12}\right )}} + 12\right )}\right )} e^{\left (-12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.68, size = 19, normalized size = 1.12 \begin {gather*} x+{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{-12}}{4\,x^2+8\,x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 14, normalized size = 0.82 \begin {gather*} x + e^{\frac {x}{\left (2 x + 2\right )^{2} e^{12}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________