Optimal. Leaf size=21 \[ e^{\frac {x^2 (4+\log (169))}{20 \log (50-x)}} \]
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 35, normalized size of antiderivative = 1.67, number of steps used = 4, number of rules used = 4, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {6, 6741, 12, 6706} \begin {gather*} 13^{\frac {x^2}{10 \log (50-x)}} e^{\frac {x^2}{5 \log (50-x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {4 x^2+x^2 \log (169)}{20 \log (50-x)}} \left (x^2 (-4-\log (169))+\left (-400 x+8 x^2+\left (-100 x+2 x^2\right ) \log (169)\right ) \log (50-x)\right )}{(-1000+20 x) \log ^2(50-x)} \, dx\\ &=\int \frac {e^{\frac {x^2 (4+\log (169))}{20 \log (50-x)}} x (4+\log (169)) (x+100 \log (50-x)-2 x \log (50-x))}{(1000-20 x) \log ^2(50-x)} \, dx\\ &=(4+\log (169)) \int \frac {e^{\frac {x^2 (4+\log (169))}{20 \log (50-x)}} x (x+100 \log (50-x)-2 x \log (50-x))}{(1000-20 x) \log ^2(50-x)} \, dx\\ &=13^{\frac {x^2}{10 \log (50-x)}} e^{\frac {x^2}{5 \log (50-x)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.82, size = 48, normalized size = 2.29 \begin {gather*} \frac {13^{\frac {x^2}{10 \log (50-x)}} e^{\frac {x^2}{5 \log (50-x)}} (4+\log (169))}{2 (2+\log (13))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 23, normalized size = 1.10 \begin {gather*} e^{\left (\frac {x^{2} \log \left (13\right ) + 2 \, x^{2}}{10 \, \log \left (-x + 50\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 30, normalized size = 1.43 \begin {gather*} e^{\left (\frac {x^{2} \log \left (13\right )}{10 \, \log \left (-x + 50\right )} + \frac {x^{2}}{5 \, \log \left (-x + 50\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 19, normalized size = 0.90
method | result | size |
risch | \({\mathrm e}^{\frac {x^{2} \left (\ln \left (13\right )+2\right )}{10 \ln \left (-x +50\right )}}\) | \(19\) |
norman | \({\mathrm e}^{\frac {2 x^{2} \ln \left (13\right )+4 x^{2}}{20 \ln \left (-x +50\right )}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 23, normalized size = 1.10 \begin {gather*} {\mathrm {e}}^{\frac {x^2\,\ln \left (13\right )+2\,x^2}{10\,\ln \left (50-x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 19, normalized size = 0.90 \begin {gather*} e^{\frac {\frac {x^{2}}{5} + \frac {x^{2} \log {\left (13 \right )}}{10}}{\log {\left (50 - x \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________