Optimal. Leaf size=32 \[ \frac {3}{x \log \left (\log \left (x \log \left (e^{2 x-2 x^2}\right )+\frac {4 \log (4)}{\log (x)}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 \log (4)+\left (6 x^2-9 x^3\right ) \log ^2(x)+\left (6 \log (4) \log (x)+\left (3 x^2-3 x^3\right ) \log ^2(x)\right ) \log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right ) \log \left (\log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right )\right )}{\left (-2 x^2 \log (4) \log (x)+\left (-x^4+x^5\right ) \log ^2(x)\right ) \log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right ) \log ^2\left (\log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \log (4)-\left (6 x^2-9 x^3\right ) \log ^2(x)-\left (6 \log (4) \log (x)+\left (3 x^2-3 x^3\right ) \log ^2(x)\right ) \log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right ) \log \left (\log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right )\right )}{x^2 \log (x) \left (2 \log (4)+x^2 \log (x)-x^3 \log (x)\right ) \log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right ) \log ^2\left (\log \left (\frac {4 \log (4)+\left (2 x^2-2 x^3\right ) \log (x)}{\log (x)}\right )\right )} \, dx\\ &=\int \frac {6 \log (4)+3 x^2 (-2+3 x) \log ^2(x)-\log (x) \left (6 \log (4)-3 (-1+x) x^2 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log \left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )}{x^2 \log (x) \left (\log (16)-(-1+x) x^2 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx\\ &=\int \left (-\frac {3 \left (2 \log (4)-2 x^2 \log ^2(x)+3 x^3 \log ^2(x)\right )}{x^2 \log (x) \left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )}-\frac {3 \left (-2 \log (4)-x^2 \log (x)+x^3 \log (x)\right )}{x^2 \left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )}\right ) \, dx\\ &=-\left (3 \int \frac {2 \log (4)-2 x^2 \log ^2(x)+3 x^3 \log ^2(x)}{x^2 \log (x) \left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx\right )-3 \int \frac {-2 \log (4)-x^2 \log (x)+x^3 \log (x)}{x^2 \left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx\\ &=-\left (3 \int \left (\frac {2 \log (x)}{\left (\log (16)+x^2 \log (x)-x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )}+\frac {\log (16)}{x^2 \log (x) \left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )}+\frac {3 x \log (x)}{\left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )}\right ) \, dx\right )-3 \int \frac {1}{x^2 \log \left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx\\ &=-\left (3 \int \frac {1}{x^2 \log \left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx\right )-6 \int \frac {\log (x)}{\left (\log (16)+x^2 \log (x)-x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx-9 \int \frac {x \log (x)}{\left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx-(3 \log (16)) \int \frac {1}{x^2 \log (x) \left (-\log (16)-x^2 \log (x)+x^3 \log (x)\right ) \log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right ) \log ^2\left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 89, normalized size = 2.78 \begin {gather*} -\frac {3 \left (\log (256)-2 (-1+x) x^2 \log (x)\right ) \left (\log (16)+x^2 (-2+3 x) \log ^2(x)\right )}{x \left (-2 \log (4)+(-1+x) x^2 \log (x)\right ) \left (\log (256)+2 x^2 (-2+3 x) \log ^2(x)\right ) \log \left (\log \left (-2 (-1+x) x^2+\frac {\log (256)}{\log (x)}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 32, normalized size = 1.00 \begin {gather*} \frac {3}{x \log \left (\log \left (-\frac {2 \, {\left ({\left (x^{3} - x^{2}\right )} \log \relax (x) - 4 \, \log \relax (2)\right )}}{\log \relax (x)}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 35, normalized size = 1.09 \begin {gather*} \frac {3}{x \log \left (\log \relax (2) + \log \left (-x^{3} \log \relax (x) + x^{2} \log \relax (x) + 4 \, \log \relax (2)\right ) - \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 151, normalized size = 4.72
method | result | size |
risch | \(\frac {3}{x \ln \left (3 \ln \relax (2)-\ln \left (\ln \relax (x )\right )+\ln \left (-\frac {x^{3} \ln \relax (x )}{4}+\frac {x^{2} \ln \relax (x )}{4}+\ln \relax (2)\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {x^{3} \ln \relax (x )}{4}+\frac {x^{2} \ln \relax (x )}{4}+\ln \relax (2)\right )}{\ln \relax (x )}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {x^{3} \ln \relax (x )}{4}+\frac {x^{2} \ln \relax (x )}{4}+\ln \relax (2)\right )}{\ln \relax (x )}\right )+\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {x^{3} \ln \relax (x )}{4}+\frac {x^{2} \ln \relax (x )}{4}+\ln \relax (2)\right )}{\ln \relax (x )}\right )+\mathrm {csgn}\left (i \left (-\frac {x^{3} \ln \relax (x )}{4}+\frac {x^{2} \ln \relax (x )}{4}+\ln \relax (2)\right )\right )\right )}{2}\right )}\) | \(151\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.84, size = 37, normalized size = 1.16 \begin {gather*} \frac {3}{x \log \left (i \, \pi + \log \relax (2) + \log \left ({\left (x^{3} - x^{2}\right )} \log \relax (x) - 4 \, \log \relax (2)\right ) - \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.16, size = 27, normalized size = 0.84 \begin {gather*} \frac {3}{x \log {\left (\log {\left (\frac {\left (- 2 x^{3} + 2 x^{2}\right ) \log {\relax (x )} + 8 \log {\relax (2 )}}{\log {\relax (x )}} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________