Optimal. Leaf size=25 \[ \frac {1}{5} x \left (x-\frac {e^5}{\log \left (3 \left (-\frac {3}{4}+\frac {1}{x}+x\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^5 \left (-4+4 x^2\right )+e^5 \left (-4+3 x-4 x^2\right ) \log \left (\frac {12-9 x+12 x^2}{4 x}\right )+\left (8 x-6 x^2+8 x^3\right ) \log ^2\left (\frac {12-9 x+12 x^2}{4 x}\right )}{\left (20-15 x+20 x^2\right ) \log ^2\left (\frac {12-9 x+12 x^2}{4 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{5} \left (2 x+\frac {4 e^5 \left (-1+x^2\right )}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}-\frac {e^5}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \, dx\\ &=\frac {1}{5} \int \left (2 x+\frac {4 e^5 \left (-1+x^2\right )}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}-\frac {e^5}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \, dx\\ &=\frac {x^2}{5}-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx+\frac {1}{5} \left (4 e^5\right ) \int \frac {-1+x^2}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx\\ &=\frac {x^2}{5}-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx+\frac {1}{5} \left (4 e^5\right ) \int \left (\frac {1}{4 \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}+\frac {-8+3 x}{4 \left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \, dx\\ &=\frac {x^2}{5}+\frac {1}{5} e^5 \int \frac {1}{\log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx+\frac {1}{5} e^5 \int \frac {-8+3 x}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx\\ &=\frac {x^2}{5}+\frac {1}{5} e^5 \int \left (-\frac {8}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}+\frac {3 x}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \, dx+\frac {1}{5} e^5 \int \frac {1}{\log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx\\ &=\frac {x^2}{5}+\frac {1}{5} e^5 \int \frac {1}{\log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx+\frac {1}{5} \left (3 e^5\right ) \int \frac {x}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {1}{5} \left (8 e^5\right ) \int \frac {1}{\left (4-3 x+4 x^2\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx\\ &=\frac {x^2}{5}+\frac {1}{5} e^5 \int \frac {1}{\log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx+\frac {1}{5} \left (3 e^5\right ) \int \left (\frac {1-\frac {3 i}{\sqrt {55}}}{\left (-3-i \sqrt {55}+8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}+\frac {1+\frac {3 i}{\sqrt {55}}}{\left (-3+i \sqrt {55}+8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \, dx-\frac {1}{5} \left (8 e^5\right ) \int \left (\frac {8 i}{\sqrt {55} \left (3+i \sqrt {55}-8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}+\frac {8 i}{\sqrt {55} \left (-3+i \sqrt {55}+8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \, dx\\ &=\frac {x^2}{5}+\frac {1}{5} e^5 \int \frac {1}{\log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {1}{5} e^5 \int \frac {1}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx-\frac {\left (64 i e^5\right ) \int \frac {1}{\left (3+i \sqrt {55}-8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx}{5 \sqrt {55}}-\frac {\left (64 i e^5\right ) \int \frac {1}{\left (-3+i \sqrt {55}+8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx}{5 \sqrt {55}}+\frac {1}{275} \left (3 \left (55-3 i \sqrt {55}\right ) e^5\right ) \int \frac {1}{\left (-3-i \sqrt {55}+8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx+\frac {1}{275} \left (3 \left (55+3 i \sqrt {55}\right ) e^5\right ) \int \frac {1}{\left (-3+i \sqrt {55}+8 x\right ) \log ^2\left (-\frac {9}{4}+\frac {3}{x}+3 x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 29, normalized size = 1.16 \begin {gather*} \frac {1}{5} \left (x^2-\frac {e^5 x}{\log \left (-\frac {9}{4}+\frac {3}{x}+3 x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.06, size = 46, normalized size = 1.84 \begin {gather*} \frac {x^{2} \log \left (\frac {3 \, {\left (4 \, x^{2} - 3 \, x + 4\right )}}{4 \, x}\right ) - x e^{5}}{5 \, \log \left (\frac {3 \, {\left (4 \, x^{2} - 3 \, x + 4\right )}}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 46, normalized size = 1.84 \begin {gather*} \frac {x^{2} \log \left (\frac {3 \, {\left (4 \, x^{2} - 3 \, x + 4\right )}}{4 \, x}\right ) - x e^{5}}{5 \, \log \left (\frac {3 \, {\left (4 \, x^{2} - 3 \, x + 4\right )}}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 30, normalized size = 1.20
method | result | size |
risch | \(\frac {x^{2}}{5}-\frac {x \,{\mathrm e}^{5}}{5 \ln \left (\frac {12 x^{2}-9 x +12}{4 x}\right )}\) | \(30\) |
norman | \(\frac {-\frac {x \,{\mathrm e}^{5}}{5}+\frac {x^{2} \ln \left (\frac {12 x^{2}-9 x +12}{4 x}\right )}{5}}{\ln \left (\frac {12 x^{2}-9 x +12}{4 x}\right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 65, normalized size = 2.60 \begin {gather*} \frac {x^{2} {\left (\log \relax (3) - 2 \, \log \relax (2)\right )} + x^{2} \log \left (4 \, x^{2} - 3 \, x + 4\right ) - x^{2} \log \relax (x) - x e^{5}}{5 \, {\left (\log \relax (3) - 2 \, \log \relax (2) + \log \left (4 \, x^{2} - 3 \, x + 4\right ) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.54, size = 95, normalized size = 3.80 \begin {gather*} \frac {\frac {3\,{\mathrm {e}}^5}{2}-4\,x\,{\mathrm {e}}^5}{10\,x^2-10}-\frac {x\,{\mathrm {e}}^5}{5}-\frac {\frac {x\,{\mathrm {e}}^5}{5}-\frac {x\,\ln \left (\frac {3\,x^2-\frac {9\,x}{4}+3}{x}\right )\,{\mathrm {e}}^5\,\left (4\,x^2-3\,x+4\right )}{20\,\left (x^2-1\right )}}{\ln \left (\frac {3\,x^2-\frac {9\,x}{4}+3}{x}\right )}+\frac {x^2}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 26, normalized size = 1.04 \begin {gather*} \frac {x^{2}}{5} - \frac {x e^{5}}{5 \log {\left (\frac {3 x^{2} - \frac {9 x}{4} + 3}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________