Optimal. Leaf size=18 \[ e^{-5+2 x}+\frac {-1+\log (2)}{(-2+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 23, normalized size of antiderivative = 1.28, number of steps used = 3, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6688, 2194} \begin {gather*} e^{2 x-5}-\frac {1-\log (2)}{(2-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{-5+2 x}-\frac {2 (-1+\log (2))}{(-2+x)^3}\right ) \, dx\\ &=-\frac {1-\log (2)}{(2-x)^2}+2 \int e^{-5+2 x} \, dx\\ &=e^{-5+2 x}-\frac {1-\log (2)}{(2-x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.00 \begin {gather*} e^{-5+2 x}+\frac {-1+\log (2)}{(-2+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 30, normalized size = 1.67 \begin {gather*} \frac {{\left (x^{2} - 4 \, x + 4\right )} e^{\left (2 \, x - 5\right )} + \log \relax (2) - 1}{x^{2} - 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 50, normalized size = 2.78 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} - 4 \, x e^{\left (2 \, x\right )} + e^{5} \log \relax (2) - e^{5} + 4 \, e^{\left (2 \, x\right )}}{x^{2} e^{5} - 4 \, x e^{5} + 4 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 28, normalized size = 1.56
method | result | size |
derivativedivides | \(-\frac {4}{\left (2 x -4\right )^{2}}+\frac {4 \ln \relax (2)}{\left (2 x -4\right )^{2}}+{\mathrm e}^{2 x -5}\) | \(28\) |
default | \(-\frac {4}{\left (2 x -4\right )^{2}}+\frac {4 \ln \relax (2)}{\left (2 x -4\right )^{2}}+{\mathrm e}^{2 x -5}\) | \(28\) |
risch | \(-\frac {1}{x^{2}-4 x +4}+\frac {\ln \relax (2)}{x^{2}-4 x +4}+{\mathrm e}^{2 x -5}\) | \(33\) |
norman | \(\frac {{\mathrm e}^{2 x -5} x^{2}-1-4 \,{\mathrm e}^{2 x -5} x +4 \,{\mathrm e}^{2 x -5}+\ln \relax (2)}{\left (x -2\right )^{2}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (x^{3} - 6 \, x^{2} + 12 \, x\right )} e^{\left (2 \, x\right )}}{x^{3} e^{5} - 6 \, x^{2} e^{5} + 12 \, x e^{5} - 8 \, e^{5}} + \frac {16 \, e^{\left (-1\right )} E_{3}\left (-2 \, x + 4\right )}{{\left (x - 2\right )}^{2}} + \frac {\log \relax (2)}{x^{2} - 4 \, x + 4} - \frac {1}{x^{2} - 4 \, x + 4} + 24 \, \int \frac {e^{\left (2 \, x\right )}}{x^{4} e^{5} - 8 \, x^{3} e^{5} + 24 \, x^{2} e^{5} - 32 \, x e^{5} + 16 \, e^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 22, normalized size = 1.22 \begin {gather*} {\mathrm {e}}^{2\,x-5}+\frac {\ln \relax (2)-1}{x^2-4\,x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 1.22 \begin {gather*} e^{2 x - 5} - \frac {2 - 2 \log {\relax (2 )}}{2 x^{2} - 8 x + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________