Optimal. Leaf size=26 \[ -e^{e^{-x} x \left (2+x+x^2\right )}+4 (-9+x)^2+x \]
________________________________________________________________________________________
Rubi [F] time = 0.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-x} \left (e^x (-71+8 x)+e^{e^{-x} \left (2 x+x^2+x^3\right )} \left (-2-2 x^2+x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-71+8 x+e^{-x+e^{-x} x \left (2+x+x^2\right )} \left (-2-2 x^2+x^3\right )\right ) \, dx\\ &=-71 x+4 x^2+\int e^{-x+e^{-x} x \left (2+x+x^2\right )} \left (-2-2 x^2+x^3\right ) \, dx\\ &=-71 x+4 x^2+\int \left (-2 e^{-x+e^{-x} x \left (2+x+x^2\right )}-2 e^{-x+e^{-x} x \left (2+x+x^2\right )} x^2+e^{-x+e^{-x} x \left (2+x+x^2\right )} x^3\right ) \, dx\\ &=-71 x+4 x^2-2 \int e^{-x+e^{-x} x \left (2+x+x^2\right )} \, dx-2 \int e^{-x+e^{-x} x \left (2+x+x^2\right )} x^2 \, dx+\int e^{-x+e^{-x} x \left (2+x+x^2\right )} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 1.00 \begin {gather*} -e^{e^{-x} x \left (2+x+x^2\right )}-71 x+4 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 27, normalized size = 1.04 \begin {gather*} 4 \, x^{2} - 71 \, x - e^{\left ({\left (x^{3} + x^{2} + 2 \, x\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left ({\left (x^{3} - 2 \, x^{2} - 2\right )} e^{\left ({\left (x^{3} + x^{2} + 2 \, x\right )} e^{\left (-x\right )}\right )} + {\left (8 \, x - 71\right )} e^{x}\right )} e^{\left (-x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.96
method | result | size |
risch | \(4 x^{2}-71 x -{\mathrm e}^{x \left (x^{2}+x +2\right ) {\mathrm e}^{-x}}\) | \(25\) |
norman | \(\left (-71 \,{\mathrm e}^{x} x +4 \,{\mathrm e}^{x} x^{2}-{\mathrm e}^{x} {\mathrm e}^{\left (x^{3}+x^{2}+2 x \right ) {\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 36, normalized size = 1.38 \begin {gather*} 4 \, x^{2} - 71 \, x - e^{\left (x^{3} e^{\left (-x\right )} + x^{2} e^{\left (-x\right )} + 2 \, x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.31, size = 37, normalized size = 1.42 \begin {gather*} 4\,x^2-71\,x-{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{x^3\,{\mathrm {e}}^{-x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 22, normalized size = 0.85 \begin {gather*} 4 x^{2} - 71 x - e^{\left (x^{3} + x^{2} + 2 x\right ) e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________