Optimal. Leaf size=26 \[ -5+e^{e^x}+\frac {(2-x) \left (2+64 e^{3+x}+x\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 31, normalized size of antiderivative = 1.19, number of steps used = 14, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {14, 6742, 2282, 2194, 2199, 2177, 2178} \begin {gather*} -x+e^{e^x}-64 e^{x+3}+\frac {128 e^{x+3}}{x}+\frac {4}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2282
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-4-x^2}{x^2}-\frac {e^x \left (128 e^3-128 e^3 x+64 e^3 x^2-e^{e^x} x^2\right )}{x^2}\right ) \, dx\\ &=\int \frac {-4-x^2}{x^2} \, dx-\int \frac {e^x \left (128 e^3-128 e^3 x+64 e^3 x^2-e^{e^x} x^2\right )}{x^2} \, dx\\ &=\int \left (-1-\frac {4}{x^2}\right ) \, dx-\int \left (-e^{e^x+x}+\frac {64 e^{3+x} \left (2-2 x+x^2\right )}{x^2}\right ) \, dx\\ &=\frac {4}{x}-x-64 \int \frac {e^{3+x} \left (2-2 x+x^2\right )}{x^2} \, dx+\int e^{e^x+x} \, dx\\ &=\frac {4}{x}-x-64 \int \left (e^{3+x}+\frac {2 e^{3+x}}{x^2}-\frac {2 e^{3+x}}{x}\right ) \, dx+\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=e^{e^x}+\frac {4}{x}-x-64 \int e^{3+x} \, dx-128 \int \frac {e^{3+x}}{x^2} \, dx+128 \int \frac {e^{3+x}}{x} \, dx\\ &=e^{e^x}-64 e^{3+x}+\frac {4}{x}+\frac {128 e^{3+x}}{x}-x+128 e^3 \text {Ei}(x)-128 \int \frac {e^{3+x}}{x} \, dx\\ &=e^{e^x}-64 e^{3+x}+\frac {4}{x}+\frac {128 e^{3+x}}{x}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 31, normalized size = 1.19 \begin {gather*} e^{e^x}-64 e^{3+x}+\frac {4}{x}+\frac {128 e^{3+x}}{x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 50, normalized size = 1.92 \begin {gather*} \frac {{\left (x e^{\left ({\left (x e^{3} + e^{\left (x + 3\right )}\right )} e^{\left (-3\right )} + 3\right )} - 64 \, {\left (x - 2\right )} e^{\left (2 \, x + 6\right )} - {\left (x^{2} - 4\right )} e^{\left (x + 3\right )}\right )} e^{\left (-x - 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 45, normalized size = 1.73 \begin {gather*} -\frac {{\left (x^{2} e^{x} + 64 \, x e^{\left (2 \, x + 3\right )} - x e^{\left (x + e^{x}\right )} - 128 \, e^{\left (2 \, x + 3\right )} - 4 \, e^{x}\right )} e^{\left (-x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.96
method | result | size |
risch | \(\frac {4}{x}-x -\frac {64 \left (x -2\right ) {\mathrm e}^{3+x}}{x}+{\mathrm e}^{{\mathrm e}^{x}}\) | \(25\) |
norman | \(\frac {4+x \,{\mathrm e}^{{\mathrm e}^{x}}-x^{2}+128 \,{\mathrm e}^{x} {\mathrm e}^{3}-64 x \,{\mathrm e}^{3} {\mathrm e}^{x}}{x}\) | \(30\) |
default | \({\mathrm e}^{{\mathrm e}^{x}}-x +\frac {4}{x}-64 \,{\mathrm e}^{x} {\mathrm e}^{3}-128 \,{\mathrm e}^{3} \left (-\frac {{\mathrm e}^{x}}{x}-\expIntegralEi \left (1, -x \right )\right )-128 \,{\mathrm e}^{3} \expIntegralEi \left (1, -x \right )\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 33, normalized size = 1.27 \begin {gather*} 128 \, {\rm Ei}\relax (x) e^{3} - 128 \, e^{3} \Gamma \left (-1, -x\right ) - x + \frac {4}{x} - 64 \, e^{\left (x + 3\right )} + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 28, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^x}-x+\frac {4}{x}+\frac {{\mathrm {e}}^x\,\left (128\,{\mathrm {e}}^3-64\,x\,{\mathrm {e}}^3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 26, normalized size = 1.00 \begin {gather*} - x + e^{e^{x}} + \frac {\left (- 64 x e^{3} + 128 e^{3}\right ) e^{x}}{x} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________