Optimal. Leaf size=24 \[ \frac {-1+3 x}{3 \left (2+e^{\log ^2\left (x^2\right )}\right )+3 x} \]
________________________________________________________________________________________
Rubi [F] time = 2.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {7 x+e^{\log ^2\left (x^2\right )} \left (3 x+(4-12 x) \log \left (x^2\right )\right )}{12 x+3 e^{2 \log ^2\left (x^2\right )} x+12 x^2+3 x^3+e^{\log ^2\left (x^2\right )} \left (12 x+6 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (7+3 e^{\log ^2\left (x^2\right )}\right ) x-4 e^{\log ^2\left (x^2\right )} (-1+3 x) \log \left (x^2\right )}{3 x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {\left (7+3 e^{\log ^2\left (x^2\right )}\right ) x-4 e^{\log ^2\left (x^2\right )} (-1+3 x) \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {(-1+3 x) \left (-x+8 \log \left (x^2\right )+4 x \log \left (x^2\right )\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}-\frac {-3 x-4 \log \left (x^2\right )+12 x \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {(-1+3 x) \left (-x+8 \log \left (x^2\right )+4 x \log \left (x^2\right )\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx-\frac {1}{3} \int \frac {-3 x-4 \log \left (x^2\right )+12 x \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )} \, dx\\ &=\frac {1}{3} \int \frac {(1-3 x) \left (x-4 (2+x) \log \left (x^2\right )\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx-\frac {1}{3} \int \left (-\frac {3}{2+e^{\log ^2\left (x^2\right )}+x}+\frac {12 \log \left (x^2\right )}{2+e^{\log ^2\left (x^2\right )}+x}-\frac {4 \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \left (\frac {3 \left (-x+8 \log \left (x^2\right )+4 x \log \left (x^2\right )\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}-\frac {-x+8 \log \left (x^2\right )+4 x \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}\right ) \, dx+\frac {4}{3} \int \frac {\log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )} \, dx-4 \int \frac {\log \left (x^2\right )}{2+e^{\log ^2\left (x^2\right )}+x} \, dx+\int \frac {1}{2+e^{\log ^2\left (x^2\right )}+x} \, dx\\ &=-\left (\frac {1}{3} \int \frac {-x+8 \log \left (x^2\right )+4 x \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx\right )+\frac {4}{3} \int \frac {\log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )} \, dx-4 \int \frac {\log \left (x^2\right )}{2+e^{\log ^2\left (x^2\right )}+x} \, dx+\int \frac {1}{2+e^{\log ^2\left (x^2\right )}+x} \, dx+\int \frac {-x+8 \log \left (x^2\right )+4 x \log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx\\ &=-\left (\frac {1}{3} \int \left (-\frac {1}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}+\frac {4 \log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}+\frac {8 \log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}\right ) \, dx\right )+\frac {4}{3} \int \frac {\log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )} \, dx-4 \int \frac {\log \left (x^2\right )}{2+e^{\log ^2\left (x^2\right )}+x} \, dx+\int \frac {1}{2+e^{\log ^2\left (x^2\right )}+x} \, dx+\int \left (-\frac {x}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}+\frac {8 \log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}+\frac {4 x \log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {1}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx-\frac {4}{3} \int \frac {\log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx+\frac {4}{3} \int \frac {\log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )} \, dx-\frac {8}{3} \int \frac {\log \left (x^2\right )}{x \left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx+4 \int \frac {x \log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx-4 \int \frac {\log \left (x^2\right )}{2+e^{\log ^2\left (x^2\right )}+x} \, dx+8 \int \frac {\log \left (x^2\right )}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx-\int \frac {x}{\left (2+e^{\log ^2\left (x^2\right )}+x\right )^2} \, dx+\int \frac {1}{2+e^{\log ^2\left (x^2\right )}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.50, size = 22, normalized size = 0.92 \begin {gather*} \frac {-1+3 x}{3 \left (2+e^{\log ^2\left (x^2\right )}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 19, normalized size = 0.79 \begin {gather*} \frac {3 \, x - 1}{3 \, {\left (x + e^{\left (\log \left (x^{2}\right )^{2}\right )} + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 19, normalized size = 0.79 \begin {gather*} \frac {3 \, x - 1}{3 \, {\left (x + e^{\left (\log \left (x^{2}\right )^{2}\right )} + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 20, normalized size = 0.83
method | result | size |
risch | \(\frac {3 x -1}{3 \,{\mathrm e}^{\ln \left (x^{2}\right )^{2}}+6+3 x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 19, normalized size = 0.79 \begin {gather*} \frac {3 \, x - 1}{3 \, {\left (x + e^{\left (4 \, \log \relax (x)^{2}\right )} + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 72, normalized size = 3.00 \begin {gather*} \frac {20\,x^2\,\ln \left (x^2\right )-8\,x\,\ln \left (x^2\right )+12\,x^3\,\ln \left (x^2\right )+x^2-3\,x^3}{3\,\left (8\,x\,\ln \left (x^2\right )+4\,x^2\,\ln \left (x^2\right )-x^2\right )\,\left (x+{\mathrm {e}}^{{\ln \left (x^2\right )}^2}+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 0.79 \begin {gather*} \frac {3 x - 1}{3 x + 3 e^{\log {\left (x^{2} \right )}^{2}} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________