Optimal. Leaf size=30 \[ -\frac {e^x-x+3 \left (2 x+x^2\right )}{x}+\frac {\log ^2(4)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 20, normalized size of antiderivative = 0.67, number of steps used = 5, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {14, 2197} \begin {gather*} -3 x-\frac {e^x}{x}+\frac {\log ^2(4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^x (-1+x)}{x^2}+\frac {-3 x^2-\log ^2(4)}{x^2}\right ) \, dx\\ &=-\int \frac {e^x (-1+x)}{x^2} \, dx+\int \frac {-3 x^2-\log ^2(4)}{x^2} \, dx\\ &=-\frac {e^x}{x}+\int \left (-3-\frac {\log ^2(4)}{x^2}\right ) \, dx\\ &=-\frac {e^x}{x}-3 x+\frac {\log ^2(4)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.67 \begin {gather*} -\frac {e^x}{x}-3 x+\frac {\log ^2(4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 19, normalized size = 0.63 \begin {gather*} -\frac {3 \, x^{2} - 4 \, \log \relax (2)^{2} + e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 19, normalized size = 0.63 \begin {gather*} -\frac {3 \, x^{2} - 4 \, \log \relax (2)^{2} + e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.70
method | result | size |
default | \(-3 x -\frac {{\mathrm e}^{x}}{x}+\frac {4 \ln \relax (2)^{2}}{x}\) | \(21\) |
norman | \(\frac {-3 x^{2}+4 \ln \relax (2)^{2}-{\mathrm e}^{x}}{x}\) | \(21\) |
risch | \(-3 x -\frac {{\mathrm e}^{x}}{x}+\frac {4 \ln \relax (2)^{2}}{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 22, normalized size = 0.73 \begin {gather*} -3 \, x + \frac {4 \, \log \relax (2)^{2}}{x} - {\rm Ei}\relax (x) + \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.27, size = 18, normalized size = 0.60 \begin {gather*} -3\,x-\frac {{\mathrm {e}}^x-4\,{\ln \relax (2)}^2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.50 \begin {gather*} - 3 x - \frac {e^{x}}{x} + \frac {4 \log {\relax (2 )}^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________