Optimal. Leaf size=22 \[ e^{\frac {1800 e^{\frac {x}{3-\frac {e^4}{4}}}}{x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 1.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}} \left (43200-3600 e^4-7200 x\right )}{-12 x^3+e^4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}} \left (43200-3600 e^4-7200 x\right )}{\left (-12+e^4\right ) x^3} \, dx\\ &=\frac {\int \frac {e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}} \left (43200-3600 e^4-7200 x\right )}{x^3} \, dx}{-12+e^4}\\ &=\frac {\int \left (-\frac {3600 e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}} \left (-12+e^4\right )}{x^3}-\frac {7200 e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}}}{x^2}\right ) \, dx}{-12+e^4}\\ &=-\left (3600 \int \frac {e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}}}{x^3} \, dx\right )+\frac {7200 \int \frac {e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}-\frac {4 x}{-12+e^4}}}{x^2} \, dx}{12-e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 35, normalized size = 1.59 \begin {gather*} -\frac {e^{\frac {1800 e^{-\frac {4 x}{-12+e^4}}}{x^2}} \left (12-e^4\right )}{-12+e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 47, normalized size = 2.14 \begin {gather*} e^{\left (-\frac {4 \, {\left (x^{3} - 450 \, {\left (e^{4} - 12\right )} e^{\left (-\frac {4 \, x}{e^{4} - 12}\right )}\right )}}{x^{2} e^{4} - 12 \, x^{2}} + \frac {4 \, x}{e^{4} - 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.45, size = 57, normalized size = 2.59 \begin {gather*} e^{\left (-\frac {4 \, {\left (x^{3} - 450 \, e^{\left (-\frac {4 \, x}{e^{4} - 12} + 4\right )} + 5400 \, e^{\left (-\frac {4 \, x}{e^{4} - 12}\right )}\right )}}{x^{2} e^{4} - 12 \, x^{2}} + \frac {4 \, x}{e^{4} - 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 17, normalized size = 0.77
method | result | size |
risch | \({\mathrm e}^{\frac {1800 \,{\mathrm e}^{-\frac {4 x}{{\mathrm e}^{4}-12}}}{x^{2}}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 16, normalized size = 0.73 \begin {gather*} e^{\left (\frac {1800 \, e^{\left (-\frac {4 \, x}{e^{4} - 12}\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.56, size = 16, normalized size = 0.73 \begin {gather*} {\mathrm {e}}^{\frac {1800\,{\mathrm {e}}^{-\frac {4\,x}{{\mathrm {e}}^4-12}}}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 15, normalized size = 0.68 \begin {gather*} e^{\frac {1800 e^{- \frac {4 x}{-12 + e^{4}}}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________