Optimal. Leaf size=29 \[ \log (x) \left (3-x-\left (-3-x+5 x^2+\log \left (5 x^2\right )\right ) \log (\log (4))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 56, normalized size of antiderivative = 1.93, number of steps used = 12, number of rules used = 5, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {14, 2301, 2357, 2295, 2304} \begin {gather*} -\frac {1}{4} \log (\log (4)) \log ^2\left (5 x^2\right )-5 x^2 \log (\log (4)) \log (x)-\log (\log (4)) \log ^2(x)-x (1-\log (\log (4))) \log (x)+3 (1+\log (\log (4))) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rule 2301
Rule 2304
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {\log \left (5 x^2\right ) \log (\log (4))}{x}+\frac {-x (1-\log (\log (4)))-x \log (x) (1-\log (\log (4)))-5 x^2 \log (\log (4))-2 \log (x) \log (\log (4))-10 x^2 \log (x) \log (\log (4))+3 (1+\log (\log (4)))}{x}\right ) \, dx\\ &=-\left (\log (\log (4)) \int \frac {\log \left (5 x^2\right )}{x} \, dx\right )+\int \frac {-x (1-\log (\log (4)))-x \log (x) (1-\log (\log (4)))-5 x^2 \log (\log (4))-2 \log (x) \log (\log (4))-10 x^2 \log (x) \log (\log (4))+3 (1+\log (\log (4)))}{x} \, dx\\ &=-\frac {1}{4} \log ^2\left (5 x^2\right ) \log (\log (4))+\int \left (\frac {\log (x) \left (-x (1-\log (\log (4)))-2 \log (\log (4))-10 x^2 \log (\log (4))\right )}{x}+\frac {-x (1-\log (\log (4)))-5 x^2 \log (\log (4))+3 (1+\log (\log (4)))}{x}\right ) \, dx\\ &=-\frac {1}{4} \log ^2\left (5 x^2\right ) \log (\log (4))+\int \frac {\log (x) \left (-x (1-\log (\log (4)))-2 \log (\log (4))-10 x^2 \log (\log (4))\right )}{x} \, dx+\int \frac {-x (1-\log (\log (4)))-5 x^2 \log (\log (4))+3 (1+\log (\log (4)))}{x} \, dx\\ &=-\frac {1}{4} \log ^2\left (5 x^2\right ) \log (\log (4))+\int \left (\log (x) (-1+\log (\log (4)))-\frac {2 \log (x) \log (\log (4))}{x}-10 x \log (x) \log (\log (4))\right ) \, dx+\int \left (-1+\log (\log (4))-5 x \log (\log (4))+\frac {3 (1+\log (\log (4)))}{x}\right ) \, dx\\ &=-x (1-\log (\log (4)))-\frac {5}{2} x^2 \log (\log (4))-\frac {1}{4} \log ^2\left (5 x^2\right ) \log (\log (4))+3 \log (x) (1+\log (\log (4)))+(-1+\log (\log (4))) \int \log (x) \, dx-(2 \log (\log (4))) \int \frac {\log (x)}{x} \, dx-(10 \log (\log (4))) \int x \log (x) \, dx\\ &=-x \log (x) (1-\log (\log (4)))-5 x^2 \log (x) \log (\log (4))-\log ^2(x) \log (\log (4))-\frac {1}{4} \log ^2\left (5 x^2\right ) \log (\log (4))+3 \log (x) (1+\log (\log (4)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 58, normalized size = 2.00 \begin {gather*} 3 \log (x)-x \log (x)+3 \log (x) \log (\log (4))+x \log (x) \log (\log (4))-5 x^2 \log (x) \log (\log (4))-\log ^2(x) \log (\log (4))-\frac {1}{4} \log ^2\left (5 x^2\right ) \log (\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 37, normalized size = 1.28 \begin {gather*} -{\left (x - 3\right )} \log \relax (x) - {\left ({\left (5 \, x^{2} - x + \log \relax (5) - 3\right )} \log \relax (x) + 2 \, \log \relax (x)^{2}\right )} \log \left (2 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 65, normalized size = 2.24 \begin {gather*} -2 \, {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} \log \relax (x)^{2} - {\left (5 \, x^{2} {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} - x {\left (\log \relax (2) + \log \left (\log \relax (2)\right ) - 1\right )}\right )} \log \relax (x) - {\left (\log \relax (5) \log \relax (2) + \log \relax (5) \log \left (\log \relax (2)\right ) - 3 \, \log \relax (2) - 3 \, \log \left (\log \relax (2)\right ) - 3\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 66, normalized size = 2.28
method | result | size |
norman | \(\left (\frac {3}{2}+\frac {3 \ln \relax (2)}{2}+\frac {3 \ln \left (\ln \relax (2)\right )}{2}\right ) \ln \left (5 x^{2}\right )+\left (-5 \ln \relax (2)-5 \ln \left (\ln \relax (2)\right )\right ) x^{2} \ln \relax (x )+\left (-\ln \relax (2)-\ln \left (\ln \relax (2)\right )\right ) \ln \relax (x ) \ln \left (5 x^{2}\right )+\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )-1\right ) x \ln \relax (x )\) | \(66\) |
default | \(-5 x^{2} \ln \relax (x ) \ln \left (\ln \relax (2)\right )+x \ln \relax (x ) \ln \left (\ln \relax (2)\right )-\ln \relax (x )^{2} \ln \left (\ln \relax (2)\right )-x \ln \relax (x )+3 \ln \relax (2) \ln \relax (x )-\ln \relax (2) \ln \relax (5) \ln \relax (x )-\frac {\ln \relax (2) \ln \left (x^{2}\right )^{2}}{4}-5 x^{2} \ln \relax (2) \ln \relax (x )+x \ln \relax (2) \ln \relax (x )-\ln \relax (2) \ln \relax (x )^{2}+3 \ln \relax (x )-\ln \left (\ln \relax (2)\right ) \ln \relax (5) \ln \relax (x )-\frac {\ln \left (\ln \relax (2)\right ) \ln \left (x^{2}\right )^{2}}{4}+3 \ln \relax (x ) \ln \left (\ln \relax (2)\right )\) | \(111\) |
risch | \(-2 \ln \relax (x )^{2} \ln \left (\ln \relax (2)\right )-2 \ln \relax (2) \ln \relax (x )^{2}+\left (-5 x^{2} \ln \left (\ln \relax (2)\right )-5 x^{2} \ln \relax (2)+x \ln \left (\ln \relax (2)\right )+x \ln \relax (2)-x \right ) \ln \relax (x )-\frac {\left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \left (\ln \relax (2)\right )-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \relax (2)+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \left (\ln \relax (2)\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \relax (2)-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \left (\ln \relax (2)\right )-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \relax (2)-6+2 \ln \left (\ln \relax (2)\right ) \ln \relax (5)+2 \ln \relax (2) \ln \relax (5)-6 \ln \left (\ln \relax (2)\right )-6 \ln \relax (2)\right ) \ln \relax (x )}{2}\) | \(191\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 96, normalized size = 3.31 \begin {gather*} -\frac {5}{2} \, x^{2} \log \left (2 \, \log \relax (2)\right ) - \frac {1}{4} \, \log \left (5 \, x^{2}\right )^{2} \log \left (2 \, \log \relax (2)\right ) - \log \relax (x)^{2} \log \left (2 \, \log \relax (2)\right ) - x \log \relax (x) - \frac {5}{2} \, {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} \log \left (2 \, \log \relax (2)\right ) + {\left (x \log \relax (x) - x\right )} \log \left (2 \, \log \relax (2)\right ) + x \log \left (2 \, \log \relax (2)\right ) + 3 \, \log \relax (x) \log \left (2 \, \log \relax (2)\right ) + 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.50, size = 42, normalized size = 1.45 \begin {gather*} -\ln \relax (x)\,\left (x-3\,\ln \left (2\,\ln \relax (2)\right )+\ln \left (2\,\ln \relax (2)\right )\,\ln \left (5\,x^2\right )+5\,x^2\,\ln \left (2\,\ln \relax (2)\right )-x\,\ln \left (\ln \relax (4)\right )-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 85, normalized size = 2.93 \begin {gather*} \left (- 5 x^{2} \log {\relax (2 )} - 5 x^{2} \log {\left (\log {\relax (2 )} \right )} - x + x \log {\left (\log {\relax (2 )} \right )} + x \log {\relax (2 )}\right ) \log {\relax (x )} + \left (- 2 \log {\relax (2 )} - 2 \log {\left (\log {\relax (2 )} \right )}\right ) \log {\relax (x )}^{2} + \left (- \log {\relax (2 )} \log {\relax (5 )} + 3 \log {\left (\log {\relax (2 )} \right )} - \log {\relax (5 )} \log {\left (\log {\relax (2 )} \right )} + 3 \log {\relax (2 )} + 3\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________