Optimal. Leaf size=23 \[ -5+\frac {7 x}{3}-\log (x)+\log (x+3 \log (4) \log (-3+\log (x))) \]
________________________________________________________________________________________
Rubi [F] time = 1.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-21 x^2+9 \log (4)+7 x^2 \log (x)+((27-63 x) \log (4)+(-9+21 x) \log (4) \log (x)) \log (-3+\log (x))}{-9 x^2+3 x^2 \log (x)+(-27 x \log (4)+9 x \log (4) \log (x)) \log (-3+\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {21 x^2-9 \log (4)-7 x^2 \log (x)-((27-63 x) \log (4)+(-9+21 x) \log (4) \log (x)) \log (-3+\log (x))}{3 x (3-\log (x)) (x+\log (64) \log (-3+\log (x)))} \, dx\\ &=\frac {1}{3} \int \frac {21 x^2-9 \log (4)-7 x^2 \log (x)-((27-63 x) \log (4)+(-9+21 x) \log (4) \log (x)) \log (-3+\log (x))}{x (3-\log (x)) (x+\log (64) \log (-3+\log (x)))} \, dx\\ &=\frac {1}{3} \int \left (\frac {3 (-3+7 x) \log (4)}{x \log (64)}+\frac {\log (64) \log (262144)-x \log (18014398509481984)+x \log (262144) \log (x)}{x \log (64) (-3+\log (x)) (x+\log (64) \log (-3+\log (x)))}\right ) \, dx\\ &=\frac {\int \frac {\log (64) \log (262144)-x \log (18014398509481984)+x \log (262144) \log (x)}{x (-3+\log (x)) (x+\log (64) \log (-3+\log (x)))} \, dx}{3 \log (64)}+\frac {\log (4) \int \frac {-3+7 x}{x} \, dx}{\log (64)}\\ &=\frac {\int \left (\frac {\log (64) \log (262144)}{x (-3+\log (x)) (x+\log (64) \log (-3+\log (x)))}-\frac {\log (18014398509481984)}{(-3+\log (x)) (x+\log (64) \log (-3+\log (x)))}+\frac {\log (262144) \log (x)}{(-3+\log (x)) (x+\log (64) \log (-3+\log (x)))}\right ) \, dx}{3 \log (64)}+\frac {\log (4) \int \left (7-\frac {3}{x}\right ) \, dx}{\log (64)}\\ &=\frac {7 x \log (4)}{\log (64)}-\frac {3 \log (4) \log (x)}{\log (64)}+\frac {1}{3} \log (262144) \int \frac {1}{x (-3+\log (x)) (x+\log (64) \log (-3+\log (x)))} \, dx+\frac {\log (262144) \int \frac {\log (x)}{(-3+\log (x)) (x+\log (64) \log (-3+\log (x)))} \, dx}{3 \log (64)}-\frac {\log (18014398509481984) \int \frac {1}{(-3+\log (x)) (x+\log (64) \log (-3+\log (x)))} \, dx}{3 \log (64)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 44, normalized size = 1.91 \begin {gather*} \frac {7 x \log (4)}{\log (64)}+\frac {1}{3} \left (-\frac {9 \log (4) \log (x)}{\log (64)}+\frac {9 \log (4) \log (x+\log (64) \log (-3+\log (x)))}{\log (64)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 20, normalized size = 0.87 \begin {gather*} \frac {7}{3} \, x + \log \left (6 \, \log \relax (2) \log \left (\log \relax (x) - 3\right ) + x\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 20, normalized size = 0.87 \begin {gather*} \frac {7}{3} \, x + \log \left (6 \, \log \relax (2) \log \left (\log \relax (x) - 3\right ) + x\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 21, normalized size = 0.91
method | result | size |
norman | \(-\ln \relax (x )+\frac {7 x}{3}+\ln \left (6 \ln \relax (2) \ln \left (\ln \relax (x )-3\right )+x \right )\) | \(21\) |
risch | \(\frac {7 x}{3}-\ln \relax (x )+\ln \left (\ln \left (\ln \relax (x )-3\right )+\frac {x}{6 \ln \relax (2)}\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 26, normalized size = 1.13 \begin {gather*} \frac {7}{3} \, x - \log \relax (x) + \log \left (\frac {6 \, \log \relax (2) \log \left (\log \relax (x) - 3\right ) + x}{6 \, \log \relax (2)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {18\,\ln \relax (2)+7\,x^2\,\ln \relax (x)-\ln \left (\ln \relax (x)-3\right )\,\left (2\,\ln \relax (2)\,\left (63\,x-27\right )-2\,\ln \relax (2)\,\ln \relax (x)\,\left (21\,x-9\right )\right )-21\,x^2}{9\,x^2-3\,x^2\,\ln \relax (x)+\ln \left (\ln \relax (x)-3\right )\,\left (54\,x\,\ln \relax (2)-18\,x\,\ln \relax (2)\,\ln \relax (x)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 22, normalized size = 0.96 \begin {gather*} \frac {7 x}{3} - \log {\relax (x )} + \log {\left (\frac {x}{6 \log {\relax (2 )}} + \log {\left (\log {\relax (x )} - 3 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________