Optimal. Leaf size=31 \[ x \log \left (x \left (\frac {e^{\frac {5}{-2+\log (5)}} x}{4+x}-\log (-9+2 x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32 x+16 x^2+2 x^3+e^{\frac {5}{-2+\log (5)}} \left (72 x-7 x^2-2 x^3\right )+\left (-144-40 x+7 x^2+2 x^3\right ) \log (-9+2 x)+\left (e^{\frac {5}{-2+\log (5)}} \left (36 x+x^2-2 x^3\right )+\left (-144-40 x+7 x^2+2 x^3\right ) \log (-9+2 x)\right ) \log \left (\frac {e^{\frac {5}{-2+\log (5)}} x^2+\left (-4 x-x^2\right ) \log (-9+2 x)}{4+x}\right )}{e^{\frac {5}{-2+\log (5)}} \left (36 x+x^2-2 x^3\right )+\left (-144-40 x+7 x^2+2 x^3\right ) \log (-9+2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 x+16 x^2+2 x^3+e^{\frac {5}{-2+\log (5)}} \left (72 x-7 x^2-2 x^3\right )+\left (-144-40 x+7 x^2+2 x^3\right ) \log (-9+2 x)+\left (e^{\frac {5}{-2+\log (5)}} \left (36 x+x^2-2 x^3\right )+\left (-144-40 x+7 x^2+2 x^3\right ) \log (-9+2 x)\right ) \log \left (\frac {e^{\frac {5}{-2+\log (5)}} x^2+\left (-4 x-x^2\right ) \log (-9+2 x)}{4+x}\right )}{\left (36+x-2 x^2\right ) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx\\ &=\int \left (\frac {e^{\frac {5}{-2+\log (5)}} x (8+x)}{(4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}-\frac {32 x}{(4+x) (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}-\frac {16 x^2}{(4+x) (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}-\frac {2 x^3}{(4+x) (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}+\frac {(4+x) \log (-9+2 x)}{-e^{\frac {5}{-2+\log (5)}} x+4 \log (-9+2 x)+x \log (-9+2 x)}+\log \left (\frac {e^{\frac {5}{-2+\log (5)}} x^2}{4+x}-x \log (-9+2 x)\right )\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{(4+x) (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx\right )-16 \int \frac {x^2}{(4+x) (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx-32 \int \frac {x}{(4+x) (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx+e^{-\frac {5}{2-\log (5)}} \int \frac {x (8+x)}{(4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx+\int \frac {(4+x) \log (-9+2 x)}{-e^{\frac {5}{-2+\log (5)}} x+4 \log (-9+2 x)+x \log (-9+2 x)} \, dx+\int \log \left (\frac {e^{\frac {5}{-2+\log (5)}} x^2}{4+x}-x \log (-9+2 x)\right ) \, dx\\ &=-\left (2 \int \left (\frac {1}{4 \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}+\frac {x}{2 \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}+\frac {64}{17 (4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}+\frac {729}{68 (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}\right ) \, dx\right )-16 \int \left (\frac {1}{2 \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}-\frac {16}{17 (4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}+\frac {81}{34 (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}\right ) \, dx-32 \int \left (\frac {4}{17 (4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}+\frac {9}{17 (-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}\right ) \, dx+e^{-\frac {5}{2-\log (5)}} \int \left (\frac {4}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)}+\frac {x}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)}-\frac {16}{(4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )}\right ) \, dx+\int \left (1-\frac {e^{\frac {5}{-2+\log (5)}} x}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)}\right ) \, dx+\int \log \left (\frac {e^{\frac {5}{-2+\log (5)}} x^2}{4+x}-x \log (-9+2 x)\right ) \, dx\\ &=x-\frac {1}{2} \int \frac {1}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)} \, dx-2 \left (\frac {128}{17} \int \frac {1}{(4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx\right )-8 \int \frac {1}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)} \, dx+\frac {256}{17} \int \frac {1}{(4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx-\frac {288}{17} \int \frac {1}{(-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx-\frac {729}{34} \int \frac {1}{(-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx-\frac {648}{17} \int \frac {1}{(-9+2 x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx+\left (4 e^{-\frac {5}{2-\log (5)}}\right ) \int \frac {1}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)} \, dx-\left (16 e^{-\frac {5}{2-\log (5)}}\right ) \int \frac {1}{(4+x) \left (e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)\right )} \, dx-\int \frac {x}{e^{\frac {5}{-2+\log (5)}} x-4 \log (-9+2 x)-x \log (-9+2 x)} \, dx+\int \log \left (\frac {e^{\frac {5}{-2+\log (5)}} x^2}{4+x}-x \log (-9+2 x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 31, normalized size = 1.00 \begin {gather*} x \log \left (x \left (\frac {e^{\frac {5}{-2+\log (5)}} x}{4+x}-\log (-9+2 x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 38, normalized size = 1.23 \begin {gather*} x \log \left (\frac {x^{2} e^{\left (\frac {5}{\log \relax (5) - 2}\right )} - {\left (x^{2} + 4 \, x\right )} \log \left (2 \, x - 9\right )}{x + 4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.38, size = 575, normalized size = 18.55
method | result | size |
risch | \(x \ln \left (-\ln \left (2 x -9\right ) x +x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}-4 \ln \left (2 x -9\right )\right )-x \ln \left (4+x \right )+x \ln \relax (x )-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right ) \mathrm {csgn}\left (\frac {i x \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{4+x}\right ) \mathrm {csgn}\left (i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{4+x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )^{3}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right ) \mathrm {csgn}\left (\frac {i x \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i x \left (\ln \left (2 x -9\right ) x -x \,{\mathrm e}^{\frac {5}{\ln \relax (5)-2}}+4 \ln \left (2 x -9\right )\right )}{4+x}\right )^{3}}{2}\) | \(575\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 44, normalized size = 1.42 \begin {gather*} x \log \left (x {\left (e^{\left (\frac {5}{\log \relax (5) - 2}\right )} - \log \left (2 \, x - 9\right )\right )} - 4 \, \log \left (2 \, x - 9\right )\right ) - x \log \left (x + 4\right ) + x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.88, size = 39, normalized size = 1.26 \begin {gather*} x\,\ln \left (-\frac {\ln \left (2\,x-9\right )\,\left (x^2+4\,x\right )-x^2\,{\mathrm {e}}^{\frac {5}{\ln \relax (5)-2}}}{x+4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.41, size = 78, normalized size = 2.52 \begin {gather*} \left (x - \frac {1}{24}\right ) \log {\left (\frac {\frac {x^{2}}{e^{- \frac {5}{-2 + \log {\relax (5 )}}}} + \left (- x^{2} - 4 x\right ) \log {\left (2 x - 9 \right )}}{x + 4} \right )} + \frac {\log {\relax (x )}}{24} + \frac {\log {\left (- \frac {x}{x e^{- \frac {5}{-2 + \log {\relax (5 )}}} + 4 e^{- \frac {5}{-2 + \log {\relax (5 )}}}} + \log {\left (2 x - 9 \right )} \right )}}{24} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________