Optimal. Leaf size=20 \[ e^{\frac {2 x}{5 \left (-12+e^x+x+x^2+\log (x)\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 1.80, antiderivative size = 28, normalized size of antiderivative = 1.40, number of steps used = 3, number of rules used = 3, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 12, 6706} \begin {gather*} e^{-\frac {2 x}{5 \left (-x^2-x-e^x-\log (x)+12\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {2 x}{5 \left (-12+e^x+x+x^2+\log (x)\right )}} \left (-13-e^x (-1+x)-x^2+\log (x)\right )}{5 \left (12-e^x-x-x^2-\log (x)\right )^2} \, dx\\ &=\frac {2}{5} \int \frac {e^{\frac {2 x}{5 \left (-12+e^x+x+x^2+\log (x)\right )}} \left (-13-e^x (-1+x)-x^2+\log (x)\right )}{\left (12-e^x-x-x^2-\log (x)\right )^2} \, dx\\ &=e^{-\frac {2 x}{5 \left (12-e^x-x-x^2-\log (x)\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.12, size = 20, normalized size = 1.00 \begin {gather*} e^{\frac {2 x}{5 \left (-12+e^x+x+x^2+\log (x)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {2 \, x}{5 \, {\left (x^{2} + x + e^{x} + \log \relax (x) - 12\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (x^{2} + {\left (x - 1\right )} e^{x} - \log \relax (x) + 13\right )} e^{\left (\frac {2 \, x}{5 \, {\left (x^{2} + x + e^{x} + \log \relax (x) - 12\right )}}\right )}}{5 \, {\left (x^{4} + 2 \, x^{3} - 23 \, x^{2} + 2 \, {\left (x^{2} + x - 12\right )} e^{x} + 2 \, {\left (x^{2} + x + e^{x} - 12\right )} \log \relax (x) + \log \relax (x)^{2} - 24 \, x + e^{\left (2 \, x\right )} + 144\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.85
method | result | size |
risch | \({\mathrm e}^{\frac {2 x}{5 \left (x^{2}+\ln \relax (x )+{\mathrm e}^{x}+x -12\right )}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {2 \, x}{5 \, {\left (x^{2} + x + e^{x} + \log \relax (x) - 12\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.38, size = 24, normalized size = 1.20 \begin {gather*} {\mathrm {e}}^{\frac {2\,x}{5\,\left (x+{\mathrm {e}}^x+\ln \relax (x)+x^2-12\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.47, size = 24, normalized size = 1.20 \begin {gather*} e^{\frac {2 x}{5 x^{2} + 5 x + 5 e^{x} + 5 \log {\relax (x )} - 60}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________