Optimal. Leaf size=25 \[ \log \left (\frac {(4-x)^2 \log \left (1+x-x^2\right )}{-1+x+\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.81, antiderivative size = 40, normalized size of antiderivative = 1.60, number of steps used = 6, number of rules used = 4, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6688, 6742, 72, 6684} \begin {gather*} \log \left (\log \left (-x^2+x+1\right )\right )+\frac {(6+\log (16)) \log (4-x)}{3+\log (4)}-\log (-x+1-\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (4-9 x+2 x^2\right ) (-1+x+\log (4))\right )-\left (-1-x+x^2\right ) (2+x+\log (16)) \log \left (1+x-x^2\right )}{\left (4+3 x-5 x^2+x^3\right ) (1-x-\log (4)) \log \left (1+x-x^2\right )} \, dx\\ &=\int \left (\frac {2+x+\log (16)}{(-4+x) (-1+x+\log (4))}+\frac {-1+2 x}{\left (-1-x+x^2\right ) \log \left (1+x-x^2\right )}\right ) \, dx\\ &=\int \frac {2+x+\log (16)}{(-4+x) (-1+x+\log (4))} \, dx+\int \frac {-1+2 x}{\left (-1-x+x^2\right ) \log \left (1+x-x^2\right )} \, dx\\ &=\log \left (\log \left (1+x-x^2\right )\right )+\int \left (\frac {1}{1-x-\log (4)}+\frac {6+\log (16)}{(-4+x) (3+\log (4))}\right ) \, dx\\ &=\frac {(6+\log (16)) \log (4-x)}{3+\log (4)}-\log (1-x-\log (4))+\log \left (\log \left (1+x-x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 40, normalized size = 1.60 \begin {gather*} \frac {(6+\log (16)) \log (4-x)}{3+\log (4)}-\log (1-x-\log (4))+\log \left (\log \left (1+x-x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 27, normalized size = 1.08 \begin {gather*} -\log \left (x + 2 \, \log \relax (2) - 1\right ) + 2 \, \log \left (x - 4\right ) + \log \left (\log \left (-x^{2} + x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 27, normalized size = 1.08 \begin {gather*} -\log \left (x + 2 \, \log \relax (2) - 1\right ) + 2 \, \log \left (x - 4\right ) + \log \left (\log \left (-x^{2} + x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 28, normalized size = 1.12
method | result | size |
default | \(-\ln \left (x +2 \ln \relax (2)-1\right )+2 \ln \left (x -4\right )+\ln \left (\ln \left (-x^{2}+x +1\right )\right )\) | \(28\) |
norman | \(-\ln \left (x +2 \ln \relax (2)-1\right )+2 \ln \left (x -4\right )+\ln \left (\ln \left (-x^{2}+x +1\right )\right )\) | \(28\) |
risch | \(-\ln \left (x +2 \ln \relax (2)-1\right )+2 \ln \left (x -4\right )+\ln \left (\ln \left (-x^{2}+x +1\right )\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 27, normalized size = 1.08 \begin {gather*} -\log \left (x + 2 \, \log \relax (2) - 1\right ) + 2 \, \log \left (x - 4\right ) + \log \left (\log \left (-x^{2} + x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 107, normalized size = 4.28 \begin {gather*} \ln \left (\ln \left (-x^2+x+1\right )\right )+\frac {\ln \left (x-4\right )\,\left (2\,\ln \left (16\right )-\ln \relax (4)+\sqrt {4\,\ln \left (256\right )-10\,\ln \relax (4)+{\ln \relax (4)}^2+9}+9\right )}{2\,\sqrt {4\,\ln \left (256\right )-10\,\ln \relax (4)+{\ln \relax (4)}^2+9}}+\frac {\ln \left (x+\ln \relax (4)-1\right )\,\left (\ln \relax (4)-2\,\ln \left (16\right )+\sqrt {4\,\ln \left (256\right )-10\,\ln \relax (4)+{\ln \relax (4)}^2+9}-9\right )}{2\,\sqrt {4\,\ln \left (256\right )-10\,\ln \relax (4)+{\ln \relax (4)}^2+9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 26, normalized size = 1.04 \begin {gather*} 2 \log {\left (x - 4 \right )} - \log {\left (x - 1 + 2 \log {\relax (2 )} \right )} + \log {\left (\log {\left (- x^{2} + x + 1 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________