Optimal. Leaf size=29 \[ x-\left (x+\frac {3-e}{4 \log (x)}\right )^2-4 x \log ^2(\log (4)) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 48, normalized size of antiderivative = 1.66, number of steps used = 8, number of rules used = 6, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {12, 6688, 2302, 30, 2297, 2298} \begin {gather*} -\frac {1}{4} \left (-2 x+1-4 \log ^2(\log (4))\right )^2-\frac {(3-e)^2}{16 \log ^2(x)}-\frac {(3-e) x}{2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {9-6 e+e^2+(12 x-4 e x) \log (x)+(-12 x+4 e x) \log ^2(x)+\left (8 x-16 x^2\right ) \log ^3(x)-32 x \log ^3(x) \log ^2(\log (4))}{x \log ^3(x)} \, dx\\ &=\frac {1}{8} \int \left (\frac {(-3+e)^2}{x \log ^3(x)}-\frac {4 (-3+e)}{\log ^2(x)}+\frac {4 (-3+e)}{\log (x)}-8 \left (-1+2 x+4 \log ^2(\log (4))\right )\right ) \, dx\\ &=-\frac {1}{4} \left (1-2 x-4 \log ^2(\log (4))\right )^2+\frac {1}{2} (3-e) \int \frac {1}{\log ^2(x)} \, dx+\frac {1}{8} (3-e)^2 \int \frac {1}{x \log ^3(x)} \, dx+\frac {1}{2} (-3+e) \int \frac {1}{\log (x)} \, dx\\ &=-\frac {(3-e) x}{2 \log (x)}-\frac {1}{4} \left (1-2 x-4 \log ^2(\log (4))\right )^2-\frac {1}{2} (3-e) \text {li}(x)+\frac {1}{2} (3-e) \int \frac {1}{\log (x)} \, dx+\frac {1}{8} (3-e)^2 \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (x)\right )\\ &=-\frac {(3-e)^2}{16 \log ^2(x)}-\frac {(3-e) x}{2 \log (x)}-\frac {1}{4} \left (1-2 x-4 \log ^2(\log (4))\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 62, normalized size = 2.14 \begin {gather*} x-x^2-\frac {9}{16 \log ^2(x)}+\frac {3 e}{8 \log ^2(x)}-\frac {e^2}{16 \log ^2(x)}-\frac {3 x}{2 \log (x)}+\frac {e x}{2 \log (x)}-4 x \log ^2(\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 55, normalized size = 1.90 \begin {gather*} -\frac {16 \, x \log \left (4 \, \log \relax (2)^{2}\right )^{2} \log \relax (x)^{2} + 16 \, {\left (x^{2} - x\right )} \log \relax (x)^{2} - 8 \, {\left (x e - 3 \, x\right )} \log \relax (x) + e^{2} - 6 \, e + 9}{16 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 77, normalized size = 2.66 \begin {gather*} -\frac {64 \, x \log \relax (2)^{2} \log \relax (x)^{2} + 128 \, x \log \relax (2) \log \relax (x)^{2} \log \left (\log \relax (2)\right ) + 64 \, x \log \relax (x)^{2} \log \left (\log \relax (2)\right )^{2} + 16 \, x^{2} \log \relax (x)^{2} - 8 \, x e \log \relax (x) - 16 \, x \log \relax (x)^{2} + 24 \, x \log \relax (x) + e^{2} - 6 \, e + 9}{16 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 57, normalized size = 1.97
method | result | size |
risch | \(-4 x \ln \left (\ln \relax (2)\right )^{2}-8 \ln \relax (2) \ln \left (\ln \relax (2)\right ) x -4 x \ln \relax (2)^{2}-x^{2}+x -\frac {-8 x \,{\mathrm e} \ln \relax (x )+{\mathrm e}^{2}+24 x \ln \relax (x )-6 \,{\mathrm e}+9}{16 \ln \relax (x )^{2}}\) | \(57\) |
norman | \(\frac {\left (\frac {{\mathrm e}}{2}-\frac {3}{2}\right ) x \ln \relax (x )+\left (-4 \ln \left (\ln \relax (2)\right )^{2}-8 \ln \relax (2) \ln \left (\ln \relax (2)\right )-4 \ln \relax (2)^{2}+1\right ) x \ln \relax (x )^{2}-x^{2} \ln \relax (x )^{2}-\frac {9}{16}-\frac {{\mathrm e}^{2}}{16}+\frac {3 \,{\mathrm e}}{8}}{\ln \relax (x )^{2}}\) | \(65\) |
default | \(-4 x \ln \relax (2)^{2}-8 \ln \relax (2) \ln \left (\ln \relax (2)\right ) x -4 x \ln \left (\ln \relax (2)\right )^{2}-x^{2}+x -\frac {{\mathrm e} \expIntegralEi \left (1, -\ln \relax (x )\right )}{2}-\frac {{\mathrm e} \left (-\frac {x}{\ln \relax (x )}-\expIntegralEi \left (1, -\ln \relax (x )\right )\right )}{2}-\frac {3 x}{2 \ln \relax (x )}-\frac {{\mathrm e}^{2}}{16 \ln \relax (x )^{2}}+\frac {3 \,{\mathrm e}}{8 \ln \relax (x )^{2}}-\frac {9}{16 \ln \relax (x )^{2}}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 71, normalized size = 2.45 \begin {gather*} -x \log \left (4 \, \log \relax (2)^{2}\right )^{2} - x^{2} + \frac {1}{2} \, {\rm Ei}\left (\log \relax (x)\right ) e - \frac {1}{2} \, e \Gamma \left (-1, -\log \relax (x)\right ) + x - \frac {e^{2}}{16 \, \log \relax (x)^{2}} + \frac {3 \, e}{8 \, \log \relax (x)^{2}} - \frac {9}{16 \, \log \relax (x)^{2}} - \frac {3}{2} \, {\rm Ei}\left (\log \relax (x)\right ) + \frac {3}{2} \, \Gamma \left (-1, -\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 62, normalized size = 2.14 \begin {gather*} -\frac {x^4+\frac {x^3\,\left (8\,{\ln \left (4\,{\ln \relax (2)}^2\right )}^2-8\right )}{8}}{x^2}-\frac {\frac {x^2\,{\left (\mathrm {e}-3\right )}^2}{16}-\frac {x^3\,\ln \relax (x)\,\left (4\,\mathrm {e}-12\right )}{8}}{x^2\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 61, normalized size = 2.10 \begin {gather*} - x^{2} + x \left (- 4 \log {\relax (2 )}^{2} - 4 \log {\left (\log {\relax (2 )} \right )}^{2} + 1 - 8 \log {\relax (2 )} \log {\left (\log {\relax (2 )} \right )}\right ) + \frac {\left (- 24 x + 8 e x\right ) \log {\relax (x )} - 9 - e^{2} + 6 e}{16 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________