3.34.95 \(\int \frac {6+2 x}{8+6 x+x^2} \, dx\)

Optimal. Leaf size=10 \[ \log \left (-1+(-3-x)^2\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 9, normalized size of antiderivative = 0.90, number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {628} \begin {gather*} \log \left (x^2+6 x+8\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(6 + 2*x)/(8 + 6*x + x^2),x]

[Out]

Log[8 + 6*x + x^2]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\log \left (8+6 x+x^2\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 9, normalized size = 0.90 \begin {gather*} \log \left (8+6 x+x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(6 + 2*x)/(8 + 6*x + x^2),x]

[Out]

Log[8 + 6*x + x^2]

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 9, normalized size = 0.90 \begin {gather*} \log \left (x^{2} + 6 \, x + 8\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x+6)/(x^2+6*x+8),x, algorithm="fricas")

[Out]

log(x^2 + 6*x + 8)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 10, normalized size = 1.00 \begin {gather*} \log \left ({\left | x^{2} + 6 \, x + 8 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x+6)/(x^2+6*x+8),x, algorithm="giac")

[Out]

log(abs(x^2 + 6*x + 8))

________________________________________________________________________________________

maple [A]  time = 0.49, size = 10, normalized size = 1.00




method result size



derivativedivides \(\ln \left (x^{2}+6 x +8\right )\) \(10\)
default \(\ln \left (x^{2}+6 x +8\right )\) \(10\)
norman \(\ln \left (2+x \right )+\ln \left (4+x \right )\) \(10\)
risch \(\ln \left (x^{2}+6 x +8\right )\) \(10\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x+6)/(x^2+6*x+8),x,method=_RETURNVERBOSE)

[Out]

ln(x^2+6*x+8)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 9, normalized size = 0.90 \begin {gather*} \log \left (x^{2} + 6 \, x + 8\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x+6)/(x^2+6*x+8),x, algorithm="maxima")

[Out]

log(x^2 + 6*x + 8)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 9, normalized size = 0.90 \begin {gather*} \ln \left (x^2+6\,x+8\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x + 6)/(6*x + x^2 + 8),x)

[Out]

log(6*x + x^2 + 8)

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 8, normalized size = 0.80 \begin {gather*} \log {\left (x^{2} + 6 x + 8 \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x+6)/(x**2+6*x+8),x)

[Out]

log(x**2 + 6*x + 8)

________________________________________________________________________________________