Optimal. Leaf size=18 \[ e^{-1-x+\log ^2\left (\frac {20 (-3+x)}{x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 20, normalized size of antiderivative = 1.11, number of steps used = 2, number of rules used = 2, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {1593, 6706} \begin {gather*} e^{-x+\log ^2\left (-\frac {20 (3-x)}{x}\right )-1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1-x+\log ^2\left (\frac {-60+20 x}{x}\right )} \left (3 x-x^2+6 \log \left (\frac {-60+20 x}{x}\right )\right )}{(-3+x) x} \, dx\\ &=e^{-1-x+\log ^2\left (-\frac {20 (3-x)}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.04, size = 18, normalized size = 1.00 \begin {gather*} e^{-1-x+\log ^2\left (\frac {20 (-3+x)}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 17, normalized size = 0.94 \begin {gather*} e^{\left (\log \left (\frac {20 \, {\left (x - 3\right )}}{x}\right )^{2} - x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 16, normalized size = 0.89 \begin {gather*} e^{\left (\log \left (-\frac {60}{x} + 20\right )^{2} - x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 19, normalized size = 1.06
method | result | size |
norman | \({\mathrm e}^{\ln \left (\frac {20 x -60}{x}\right )^{2}-x -1}\) | \(19\) |
risch | \({\mathrm e}^{\ln \left (\frac {20 x -60}{x}\right )^{2}-x -1}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.99, size = 69, normalized size = 3.83 \begin {gather*} 2^{4 \, \log \relax (5)} e^{\left (\log \relax (5)^{2} + 4 \, \log \relax (2)^{2} + 2 \, \log \relax (5) \log \left (x - 3\right ) + 4 \, \log \relax (2) \log \left (x - 3\right ) + \log \left (x - 3\right )^{2} - 2 \, \log \relax (5) \log \relax (x) - 4 \, \log \relax (2) \log \relax (x) - 2 \, \log \left (x - 3\right ) \log \relax (x) + \log \relax (x)^{2} - x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 20, normalized size = 1.11 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{{\ln \left (\frac {20\,x-60}{x}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 14, normalized size = 0.78 \begin {gather*} e^{- x + \log {\left (\frac {20 x - 60}{x} \right )}^{2} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________