Optimal. Leaf size=26 \[ \left (-4 e^{3/5}+e^{e^3}\right ) \left (-21+e^x-x\right ) \log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 65, normalized size of antiderivative = 2.50, number of steps used = 8, number of rules used = 4, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {14, 2288, 43, 2295} \begin {gather*} \left (4 e^{3/5}-e^{e^3}\right ) x \log \left (x^2\right )-\left (4 e^{3/5}-e^{e^3}\right ) e^x \log \left (x^2\right )+42 \left (4 e^{3/5}-e^{e^3}\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2288
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x \left (-4 e^{3/5}+e^{e^3}\right ) \left (2+x \log \left (x^2\right )\right )}{x}-\frac {\left (-4 e^{3/5}+e^{e^3}\right ) \left (42+2 x+x \log \left (x^2\right )\right )}{x}\right ) \, dx\\ &=\left (4 e^{3/5}-e^{e^3}\right ) \int \frac {42+2 x+x \log \left (x^2\right )}{x} \, dx+\left (-4 e^{3/5}+e^{e^3}\right ) \int \frac {e^x \left (2+x \log \left (x^2\right )\right )}{x} \, dx\\ &=-e^x \left (4 e^{3/5}-e^{e^3}\right ) \log \left (x^2\right )+\left (4 e^{3/5}-e^{e^3}\right ) \int \left (\frac {2 (21+x)}{x}+\log \left (x^2\right )\right ) \, dx\\ &=-e^x \left (4 e^{3/5}-e^{e^3}\right ) \log \left (x^2\right )+\left (4 e^{3/5}-e^{e^3}\right ) \int \log \left (x^2\right ) \, dx+\left (2 \left (4 e^{3/5}-e^{e^3}\right )\right ) \int \frac {21+x}{x} \, dx\\ &=-2 \left (4 e^{3/5}-e^{e^3}\right ) x-e^x \left (4 e^{3/5}-e^{e^3}\right ) \log \left (x^2\right )+\left (4 e^{3/5}-e^{e^3}\right ) x \log \left (x^2\right )+\left (2 \left (4 e^{3/5}-e^{e^3}\right )\right ) \int \left (1+\frac {21}{x}\right ) \, dx\\ &=42 \left (4 e^{3/5}-e^{e^3}\right ) \log (x)-e^x \left (4 e^{3/5}-e^{e^3}\right ) \log \left (x^2\right )+\left (4 e^{3/5}-e^{e^3}\right ) x \log \left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 31, normalized size = 1.19 \begin {gather*} \left (-4 e^{3/5}+e^{e^3}\right ) \left (-42 \log (x)+\left (e^x-x\right ) \log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 39, normalized size = 1.50 \begin {gather*} {\left (4 \, {\left (x + 21\right )} e^{\frac {6}{5}} - {\left ({\left (x + 21\right )} e^{\frac {3}{5}} - e^{\left (x + \frac {3}{5}\right )}\right )} e^{\left (e^{3}\right )} - 4 \, e^{\left (x + \frac {6}{5}\right )}\right )} e^{\left (-\frac {3}{5}\right )} \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.46, size = 53, normalized size = 2.04 \begin {gather*} 4 \, x e^{\frac {3}{5}} \log \left (x^{2}\right ) - x e^{\left (e^{3}\right )} \log \left (x^{2}\right ) + e^{\left (x + e^{3}\right )} \log \left (x^{2}\right ) - 4 \, e^{\left (x + \frac {3}{5}\right )} \log \left (x^{2}\right ) + 168 \, e^{\frac {3}{5}} \log \relax (x) - 42 \, e^{\left (e^{3}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 48, normalized size = 1.85
method | result | size |
norman | \(\left (-21 \,{\mathrm e}^{{\mathrm e}^{3}}+84 \,{\mathrm e}^{\frac {3}{5}}\right ) \ln \left (x^{2}\right )+\left (-{\mathrm e}^{{\mathrm e}^{3}}+4 \,{\mathrm e}^{\frac {3}{5}}\right ) x \ln \left (x^{2}\right )+\left ({\mathrm e}^{{\mathrm e}^{3}}-4 \,{\mathrm e}^{\frac {3}{5}}\right ) {\mathrm e}^{x} \ln \left (x^{2}\right )\) | \(48\) |
default | \({\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{3}} \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )-4 \,{\mathrm e}^{x} {\mathrm e}^{\frac {3}{5}} \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )+\left (2 \,{\mathrm e}^{{\mathrm e}^{3}}-8 \,{\mathrm e}^{\frac {3}{5}}\right ) {\mathrm e}^{x} \ln \relax (x )-{\mathrm e}^{{\mathrm e}^{3}} \ln \left (x^{2}\right ) x +4 \,{\mathrm e}^{\frac {3}{5}} \ln \left (x^{2}\right ) x -42 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (x )+168 \,{\mathrm e}^{\frac {3}{5}} \ln \relax (x )\) | \(79\) |
risch | \(\left (8 x \,{\mathrm e}^{\frac {3}{5}}-8 \,{\mathrm e}^{x +\frac {3}{5}}-2 x \,{\mathrm e}^{{\mathrm e}^{3}}+2 \,{\mathrm e}^{{\mathrm e}^{3}+x}\right ) \ln \relax (x )-2 i \pi \,{\mathrm e}^{\frac {3}{5}} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 i \pi \,{\mathrm e}^{\frac {3}{5}} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-2 i \pi \,{\mathrm e}^{\frac {3}{5}} x \mathrm {csgn}\left (i x^{2}\right )^{3}+\frac {i \pi \,{\mathrm e}^{{\mathrm e}^{3}} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}-i \pi \,{\mathrm e}^{{\mathrm e}^{3}} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\frac {i \pi \,{\mathrm e}^{{\mathrm e}^{3}} x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+168 \,{\mathrm e}^{\frac {3}{5}} \ln \relax (x )-42 \,{\mathrm e}^{{\mathrm e}^{3}} \ln \relax (x )+2 i \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2} \pi \,{\mathrm e}^{x +\frac {3}{5}}-4 i \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right ) \pi \,{\mathrm e}^{x +\frac {3}{5}}+2 i \mathrm {csgn}\left (i x^{2}\right )^{3} \pi \,{\mathrm e}^{x +\frac {3}{5}}-\frac {i \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2} \pi \,{\mathrm e}^{{\mathrm e}^{3}+x}}{2}+i \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right ) \pi \,{\mathrm e}^{{\mathrm e}^{3}+x}-\frac {i \mathrm {csgn}\left (i x^{2}\right )^{3} \pi \,{\mathrm e}^{{\mathrm e}^{3}+x}}{2}\) | \(287\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 74, normalized size = 2.85 \begin {gather*} 4 \, {\left (x \log \left (x^{2}\right ) - 2 \, x\right )} e^{\frac {3}{5}} + 8 \, x e^{\frac {3}{5}} - {\left (x \log \left (x^{2}\right ) - 2 \, x\right )} e^{\left (e^{3}\right )} - 2 \, x e^{\left (e^{3}\right )} + e^{\left (x + e^{3}\right )} \log \left (x^{2}\right ) - 4 \, e^{\left (x + \frac {3}{5}\right )} \log \left (x^{2}\right ) + 168 \, e^{\frac {3}{5}} \log \relax (x) - 42 \, e^{\left (e^{3}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 22, normalized size = 0.85 \begin {gather*} \ln \left (x^2\right )\,\left (4\,{\mathrm {e}}^{3/5}-{\mathrm {e}}^{{\mathrm {e}}^3}\right )\,\left (x-{\mathrm {e}}^x+21\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.52, size = 61, normalized size = 2.35 \begin {gather*} \left (- x e^{e^{3}} + 4 x e^{\frac {3}{5}}\right ) \log {\left (x^{2} \right )} + \left (- 4 e^{\frac {3}{5}} \log {\left (x^{2} \right )} + e^{e^{3}} \log {\left (x^{2} \right )}\right ) e^{x} + \left (- 42 e^{e^{3}} + 168 e^{\frac {3}{5}}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________